
Abstract 

In this project we investigate and develop the LaROS application that takes a text 

input and uses syntactic parsing tools to produce a knowledge base of linguistic 

entities. We expand the knowledge base further using references to our own OWL 

ontological framework and SWRL logic rules. Importantly our outputs are part of the 

Semantic Web and Linked Data domain. We further expand the knowledge base to 

include external data sources such as DBPedia thereby add world knowledge to the 

discovery and categorisation of rhetorical patterns including figures of speech and 

Rhetorical Structure Theory relations. We conclude that this research contributes to 

the domain by automatically creating a knowledge base that’s published and re-

usable with Semantic Web tools, but also adds Meaning Representations using 

syntactic parsing, Cue Phrase analysis and external world knowledge augmentation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

Cliff O’Reilly 

 

Table of Contents 

Chapter 1 - Introduction – page 3  

Chapter 2 – The Proposal – page 8 

Chapter 3 – Related Works – page 22 

Chapter 4 – Architecture of LaROS – page 37 

Chapter 5 – Implementation – page 47 

Chapter 6 – Evaluation – page 53 

Chapter 7 – Conclusion / Future Work – page 59 

References - page 61 

Appendices – page 67 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 

Cliff O’Reilly 

 

Table of Figures 

Figure 1.1.1.1 - Diagrammatic representation of RST annotation 

Figure 2.2.1 - Attribute Relation Net of “paper” 

Table 3.1.1 – Examples of RRSET Relations 

Figure 3.1.2 - RRSET ontology of RST relations 

Figure 3.1.3 - Fragment of OWL ontology RRSET 

Figure 3.1.4 - Generalised Annotation Parser (GAP) 

Figure 3.2.1 - proposed system schematic 

Table 3.2.2 – Domain Properties and Fuzzy Qualifiers 

Figure 3.2.3 - Part-Of-Speech tag types and an example tagged text 

Figure 3.3.1 - Necessary criteria for the Elaboration relation 

Figure 3.3.2 - Cues for Elaboration relation 

Figure 3.3.3 - RST analysis on Aardwolf text 

Figure 3.4.1 - large-margin separation output of SVM analysis 

Figure 3.4.2 - English and German model performance 

Figure 6.4.1 - An example parse tree 

Figure 5.1 – The overall Java architecture 

Figure 5.2 – Algorithmic representation with reference to Java classes 

Figure 5.3.1 – screen shot of LaROS output 

Figure 5.4.1 – UML Class diagram 

Figure 5.4.2 – UML Sequence diagram 

 

 

 

 

 

 

 

 



3 

Cliff O’Reilly 

 

 

Chapter 1 – Introduction 

This report describes the MSc project undertaken by Cliff O’Reilly during the summer 

of 2010. In the forthcoming chapters we describe the analysis and development of a 

computer system for the discovery of rhetorical patterns within natural language. We 

have used the term Lassoing rather than a more standard word like “Discovering” 

firstly because we find it more interesting to have a slightly different or incongruous 

project title, but secondly because it highlights a rhetorical form in the title of a project 

about finding rhetorical forms. The figure of speech of Catachresis is the use of “an 

extravagant, unexpected, or farfetched metaphor” [40] and the use of the word 

Lassoing fits this description. It is strange to imagine a cowboy with a rope grappling 

with strings of words, but logically correct and we hope quite memorable. 

The computer program we build in this project we call LaROS (Lassoing Rhetoric 

with OWL and SWRL). 

The report is divided into chapters that variously describe the background to the 

project – the Domain, the Problem and Related Works – and the solution, 

implementation and conclusion of the results of work undertaken on the project. 

The purpose of the project is two-fold: to develop a working prototype that can find 

successfully various language patterns by using Semantic Web tools, but also to 

develop a working knowledge base for each text input that will be augmented 

dynamically with information from the Semantic Web. The benefits of having a tool 

with visible outputs will hopefully be supplemented by the creation of Meaning 

Representations of the language. This research is an initial step towards enabling 

Semantic Analysis of language and hence enabling computers to “understand” 

natural language. 

The rest of this chapter describes the Domain and the Problem we hope to address. 

Chapter 2 describes the project proposal in detail. Chapter 3 is a description of a 

number of related works that give some background to the issues and an appraisal of 

some significant research in a similar domain. Chapter 4 is a thorough description of 

the architecture of LaROS – the solution we put together to address the problems 

shown previously. In Chapter 5 we refer to the specific implementation details of the 

solution and Chapter 6 shows our evaluation of the work. Finally Chapter 7 contains 
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our conclusion and a description of future work that we think would benefit the 

research problem. 

1.1 The Domain 

This project involves a number of domains including Natural Language Parsing, the 

Semantic Web, and forms of natural language structure known as Figures of Speech 

which go to form Rhetorical Devices.  

Parsing is a technique from Linguistics that ―means taking an input and producing 

some sort of linguistic structure for it‖ [33]. There are various forms of Parsing of text 

including Morphological, Syntactic, Semantic and Discourse [33]. For this project we 

will use Syntactic Parsing. 

The Semantic Web is a movement driven by the World Wide Web Consortium to add 

knowledge and information to the “web of data” [71] via Ontologies (in practice 

usually Knowledge Bases) and logic reasoning. By creating standards, for example 

Web Ontology Language (OWL) and Semantic Web Reasoning Language (SWRL), 

resilient links can be developed between previously disparate data relatively easily. 

Although still in its infancy its development will significantly change the internet and 

computing in general by encoding concepts and relationships within domains and 

allowing computers to “understand” the world. This technique of “encoding a domain” 

can be applied to any specification, albeit in abstraction, including natural language. 

Rhetoric has many definitions and interpretations – unsurprisingly for an art that is 

thousands of years old. Since Classical times the structure of natural language has 

been analysed and documented with respect to forms of communication intended to 

persuade, teach, enlighten, cajole, move or amuse. To facilitate the impact of rhetoric 

Figures of Speech are often employed to enhance or guide meaning. Recently there 

has been renewed interest in the art of rhetoric due to the popularity of the United 

States President Obama’s notable oratory and use of rhetoric [46]. There are 

hundreds of documented possible rhetorical patterns of words; sometimes known as 

Figures of Speech. Many of these have been described since antiquity [40]. 

Rhetorical patterns vary from simple repetitions of words or phrases to document-

level “hidden” subtexts. Many are very difficult to discover automatically as they 

require complex knowledge such as context, Anaphora Resolution, Coreference 

Resolution and, in general, a detailed, almost innate, understanding of discourse 

(skills that human readers take for granted). 
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1.1.1 Rhetorical Structure Theory 

Hovey and Maier [30] (unpublished) have analysed various forms of rhetorical 

analysis. Their research suggests that many techniques are similar in the types of 

rhetorical forms found in discourse. This project will attempt to discover relations from 

Rhetorical Structure Theory since it is a well-established theory with numerous 

implementations. It has a published corpus of annotated text - The RST Discourse 

Treebank contains 385 articles that have been annotated using RST [14] - and it has 

been used previously with Semantic Web technologies [8]. 

Rhetorical Structure Theory (RST) [42] is a Linguistic theory describing the 

organisation of natural language text. It characterises document structure in terms of 

Relations that hold between different parts of the text. Relations hold between two 

non-overlapping spans of text called the nucleus and the satellite. Relations exist 

within Schemas which hold a number of text spans and show the Relations between 

them. 

There are various types of Relations with specific meanings, e.g.  

Evidence – where a Satellite is intended to increase the reader’s belief in the nuclear 

material,  

Concession – where the Nucleus indicates a contrary expectation in light of 

information expressed in the Satellite. 

The number of relation types varies from about 30 [55] up to 65 [30] and 70 in [8], 

some more difficult to interpret than others. They are grouped into varying numbers 

of classes. 

RST uses a diagrammatic approach [51] an example of which is shown in in Figure 

2. 
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Figure 1.1.1.1 - Diagrammatic representation of RST annotation. 

Nuclei and Satellites can be arranged hierarchically since they sometimes have 

internal structure. RST is also well-suited to summarisation since omitting satellite 

nodes below a certain depth in the hierarchy can result in coherent summarisation of 

the whole text [19]. 

Carlson and Marcu [13] have detailed a reference manual to implementing RST. This 

is a useful resource as it enables users not familiar with the details of the theory to 

begin analysing texts for rhetorical forms. The main steps to enable tagging of a 

document are: Segmenting Texts into Elementary Units then Determining Nuclearity 

and finally Selecting Rhetorical Relations. 

The guide also contains a detailed inventory of different Relation types. There are 

many mechanisms used to determine where Relations exist, including Cue Phrases 

which are specific words or phrases that can be used as good indicators that 

Relations exist. These form a good basis for computational approaches as opposed 

to context or discourse-based cues [19,54,56,65]. The ability to analyse text 

automatically in this way is not possible using even all the available techniques, but 

combinations could be used in tandem to produce valuable output. 

 

1.2 The Problem 

There is a need for an automated tool to discover all forms of rhetoric in text. Manual 

annotation is well documented, but automated discovery in this domain is an open 

research problem. There has been some research and success into the automatic 

discovery of rhetoric [19, 51], but none have used Semantic Web reasoning 
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mechanisms. Therefore the problem that is proposed to be addressed by this project 

is the lack of an automated, computational rhetoric-discovery tool which uses 

Semantic Web technologies (OWL and SWRL). 

The manual analysis of language, specifically text, lies in the Linguistics domain and 

has a long history [5,40]. Building on linguistic theories developed during the 20th 

century, numerous attempts were made more recently to define rules and theories to 

better understand rhetorical forms and also to enable their analysis and 

documentation [57], e.g. Rhetorical Structure Theory (RST) [42], Discourse 

Representation Theory (DRT) [35], Segmented Discourse Representation Theory 

(SDRT) [6] and Discourse Lexicalised Tree Adjoining Grammar (DLTAG) [67].  

 

In contrast to manual analysis, the automated discovery of rhetorical patterns in text 

is much harder to do:  

 

―Linguistic accounts for rhetorical structure have the luxury to 

assume the availability of world knowledge and inference in 

rhetorical analysis. Automated systems resort, with quite some 

success, to a combination of little linguistic knowledge and a lot 

of shallow processing.‖ [51] 

 

One approach to solving the problem is to furnish automated systems with more 

world knowledge. Our view is that large amounts of world knowledge are, for the first 

time in human history, becoming readily computationally useful and available via the 

Semantic Web and Linked Data. Projects such as Wikipedia (and DBPedia) provide 

unprecedented amounts of data with good standards [27] and are in effect available 

free of charge, permanently and persistently. 

 

―Wikipedia, one of the most visited sites on the web, outstrips all 

other encyclopaedias in size and coverage. Its English language 

articles alone are 10 times the size of the Encyclopaedia 

Britannica, its nearest rival. But material in English constitutes 

only a quarter of Wikipedia—it has articles in 250 other 

languages as well.‖ [44] 
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―The DBpedia project focuses on the task of converting 

Wikipedia content into structured knowledge, such that Semantic 

Web techniques can be employed against it‖ [7] 

 

―By providing those extra links ... applications may exploit the 

extra ... knowledge from other datasets when developing an 

application; by virtue of integrating facts from several      

datasets.‖  [71] 

 

We think that one of the central aims of automated rhetorical analysis is to provide 

Meaning Representations – a formal structure that captures the meaning of linguistic 

expressions. These, in turn, can “bridge the gap from linguistic inputs to the non-

linguistic knowledge of the world needed to perform tasks involving the meaning of 

linguistic inputs” [33] The meaning of linguistic inputs causes problems for computer 

analysis of natural language  in many areas such as question-answering and 

language translation and tasks such as “following a recipe” or “deciding what to order 

at a restaurant by reading a menu … require access to representations that link the 

linguistic elements involved in the task to the non-linguistic knowledge of the world 

needed to successfully accomplish them”. [33] 

 

Chapter 2 - The Proposal 

The central task of this project is to utilise tools and theories from Linguistics 

previously shown, together with the burgeoning resource of information that is the 

Semantic Web and Linked Data in order to parse text and subsequently create and 

extend a knowledge base such that Meaning Representations in the form of 

Rhetorical Devices and Forms can be discovered and stored within the Semantic 

Web. It’s important also that any mechanisms of inference beyond knowledge-

gathering are re-usable as part of the Semantic Web movement. We hope that this 

combination will provide a bi-directional benefit by enabling better automated analysis 

of text - specifically rhetorical structures - and also to The Semantic Web and Linked 

Data through automated tools, documented ontologies with logic reasoning and 

Linked Data resources.  
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It is a very difficult task to automate the discovery of natural language elements 

beyond syntactic analysis since natural language itself is highly complex and 

contains Meaning Representations operating at a level beyond simple analysis: 

―Sources typically involved are meanings of words, conventional 

meanings associated with grammatical constructions, knowledge 

about the structure of the discourse, common-sense knowledge 

about the topic at hand and knowledge about the state of affairs 

in which the discourse is occurring‖. [33] 

 

Even the simplest of these sources - word meanings - can be very difficult to analyse 

since natural language, and especially English, can contain ambiguities, paradoxes 

and overlapping meanings of words, sometimes even within the same sentence, e.g. 

“I would like to eat somewhere local this evening.” 

A fuller description of this proposal that follows is divided into sections each 

describing an element of the proposed solution. 

 

2.1 Parsing 

The field of Natural Language Processing (NLP) is older than modern computing, but 

shares a similar development path over the last 60 years or so and, as the advent of 

powerful computing and statistical analyses have blossomed, so the application of 

algorithms, technologies and tools for the processing of natural language with 

computers has developed. 

The requirement of this project is to apply methods of parsing and analysis of 

language to our text sources. The NLP computing system/s used must enable 

automated analysis, e.g. via API or Java implementations, be either open source or 

have minimal cost, and be able to perform most, if not all, of the following NLP 

techniques: 

i) Tokenisation – the task of separating out words from running text, e.g. 

segmenting at whitespace or punctuation. 

ii) Gazetteer – determining the presence of words from a named-entity list 

(Gazetteer) 

iii) Sentence Segmentation – splitting a text into sentences 
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iv) Part-of-Speech tagging – the process of assigning a part of speech or other 

syntactic class marker to a word in a corpus, e.g. tagging types of nouns 

in a text as such. 

v) Syntactic Parsing – the task of assigning syntactic structure to sentences. 

Parse trees are an output. 

(Definitions above taken from [33]) 

This project proposes to investigate and develop statistical models using the General 

Architecture for Text Engineering (GATE) [20] and the Robust Accurate Statistical 

Parsing (RASP) [12] systems  (with application to the Semantic Web [2,11,18] and in 

general use [22]). Both of these systems have the algorithmic facilities to develop 

appropriate solutions, are either free for non-commercial use or have open sources 

licences and can be used via automated procedures, e.g. Java implementation.  

The General Architecture for Textual Engineering (GATE) is developed by Sheffield 

University’s Department of Computer Science. It comes from a long-standing project 

and is an industry-standard tool for the analysis of text. It consists of a graphical user 

interface enabling drag-and-drop of plugin elements for parsing, analysis and output 

centred on natural language text. The version proposed to use is 5.2.1 which is the 

latest when this project was undertaken. 

The main plugin for GATE is the ANNIE suite of algorithms. This group of modules 

allows tasks such as Sentence-Splitting, word Tokenisation, Gazetteer (lookup of 

proper nouns) and Part-Of-Speech tagging. Also included in the default setup for 

GATE is the Stanford Parser [58], LingPipe, RASP [12] and WordNet [70] plugin 

suites plus many more. There are also various plugins available individually and it’s 

possible to create bespoke tools since the entire product is free for non-commercial 

use and the uncompiled code is available. 

It is proposed to analyse various plugins for this project’s goals and report on the 

findings. The criteria used to test each one will be based on the output’s viability for 

the next phase of the proposed processing - populating the knowledge base – and 

also ease of use and effectiveness in a general setting. 
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2.2 Knowledge Base 

―in many cases it is the attributes of a concept that act in the role 

of meaning representation.‖ [74] 

 

In order to create Meaning Representations we need a model with the ability to 

represent objects, properties and relationships between objects in a Model-Theoretic 

Semantic scheme. This will enable our model to match the representation generated 

by our data. Figure 1 shows an example Attribute Relation Net for the “concept” of 

paper. This project is attempting to represent the domain via a “bridge between the 

meaning representation and the world being considered” [33]. In practice this means 

that we need elements in our model that represent the real world in some way and 

thereby allow a process to infer some meaning from it. For example a model 

containing an object type of car and property of speed can be instantiated to infer 

whether the car is travelling faster than the legal speed limit (also defined in the 

model). Similarly if an object type of word has a property of upperInitial we can infer 

that the word is either the first word in a sentence or perhaps a proper noun etc. The 

semantics of the model dictate the output to the real world and are defined by the 

model contents. Therefore the main mechanism in this project to deliver Meaning 

Representations is via a knowledge base containing objects, properties and 

relationships as well as a rule system to add inference along semantic lines. TBox is 

a term to refer to the vocabulary used to describe the facts of a domain (called the 

ABox) [33]. In this project we develop a TBox vocabulary and gradually populate the 

ABox facts via processing. The knowledge base will be populated from the output of 

the GATE process and then augmented by further processing of the text, the GATE 

output and also with input from Linked Data and the Semantic Web. 
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Figure 2.2.1 - Attribute Relation Net of “paper” [74] 

In the Semantic Web domain a knowledge base is typically composed of an OWL or 

RDFS ontology and RDF triple documents. The ontology contains descriptions of 

domain entities, properties and relationships and the RDF triple store contains 

instances of entities and their relationships stored in a Subject-Predicate-Object triple 

format. The storage format is most often XML. We propose to follow these principles 

as they allow greater interoperability within the proposed output for the solution and 

the larger Semantic Web due to the ease of machine-readability of XML and the 

prescribed formats of OWL and RDFS. 

The Semantic Web recommendations also make use of Description Logics in the 

form of the OWL subset OWL DL and Predicate Logic with the Semantic Web Rule 

Language (SWRL) although the W3C organisation has recently completed work on a 

Rule Interchange Format which provides a new mechanism for defining rule systems 

and managing the interchange between different ones. This has only been 

documented recently so cannot be used in this project. The choice of rule system for 

this project was dictated by a number of factors: 

a) The expressivity of terms, e.g. built-in functions 

b) Availability of Reasoning Systems that can use the rule system 

c) A reusable storage format that can form part of the Semantic Web 
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d) Works seamlessly with OWL DL 

SWRL seems to be the obvious choice as it meets these criteria (sometimes via a 

specific mechanism, however, such as the Protégé API). With the logical framework 

in place deductions can be made on the knowledge base in order to define “new” 

knowledge. SWRL is not a production rule language so new instances cannot be 

generated as an output of the reasoning process, however this will be described in 

more detail in future sections. 

There are many other elements of the Semantic Web such as GRDDL and SKOS 

which deal with extracting RDF triples from XML data automatically and sharing and 

linking knowledge systems amongst systems on the Web respectively. These are out 

of scope of this project, but are potential tools for future iterations of the solution. 

 

2.3 Ontologies and reasoning 

“The task of ontology is to explain Being itself and to make the 

Being of entities stand out in full relief”. [43] 

“Ontologies can provide the necessary framework for consistent 

semantic integration, while additionally delivering formal 

reasoning capabilities to [Natural Language Processing]” [72] 

An ontology, according to R. Studer is an “explicit and formal specification of a 

conceptualisation” and in the context of the World Wide Web provides a “shared 

understanding of a domain” [4].  

This project will use ontologies to encapsulate knowledge about and reason upon the 

domain of textual language with specific application to discovering rhetoric. In order 

to achieve this it is proposed to use OWL DL. 

The task of modelling all the domains generated by natural language is enormous, 

however as more information becomes available online and in a computer-readable 

format e.g. via DBPedia then the task will diminish. For the purposes of this project 

the domain of natural language must be modelled first and then topic-specific 

ontologies added second. Our initial thought with regards to natural language 

ontologies was the General Ontology for Linguistic Description (GOLD)  

[23,24,28,29]. This is a detailed online ontology of Linguistics. It was proposed to use 

this ontology as the main information source for language-specific entities, e.g. 



14 

Cliff O’Reilly 

 

OrthographicWord to represent a textual word, however we had problems 

maintaining links to the online presence of the ontology so we decided to model our 

own equivalent ontology. This is not a problem because we can create links to GOLD 

from our own OWL files and also the GOLD ontology has many more entities than we 

need for this project. 

The output of the GATE suite also needs representation in the knowledge base. 

GATE has its own ontology-generation algorithm, however this was deemed to be 

too prescriptive and didn’t offer the flexibility of programming the transformation of 

output into knowledge base that was required. We therefore propose to develop our 

own OWL ontologies for this task. We propose one ontology to model the gate output 

itself, e.g. Tokens, StartNodes, words, Dependencies etc., and a second ontology for 

the specific language tags generated by GATE, e.g. WhAdverb, PastParticipleVerb. 

There is some crossover between GOLD and these proposed ontologies that model 

the GATE output, but this is an acceptable and perhaps even preferred approach. 

The Semantic Web is predicated on the fact that the same entity can be described in 

more than one ontology. This allows for greater flexibility, but at the potential 

expense of validity. As long as ontology designers create relationships between two 

entities that are genuinely the same then the system works best, e.g. via the 

owl:sameAs relationship defined in a knowledge base between two instances of 

objects or owl:equivalentClass between OWL classes. 

―The Semantic Web’s attitude to ontologies is no more than a 

rationalization of actual data-sharing practice. Applications can 

and do interact without achieving or attempting to achieve global 

consistency and coverage.‖ [73] 

 

It’s proposed to use owl:sameAs and owl:equivalentClass in any novel ontologies 

produced for this project. 

Perhaps the most important ontology for the purpose of this project is one that 

describes the structure of the document (input text). Objects and relationships 

needed to be modelled include Document, hasFirstWord, hasLastWord, 

hasNextWord, hasNextSentence etc. This highly interlinked ontology will allow 

inference on instances that are in the same sentence (by virtue of having the same 

word instance defined in the sentence instance’s hasWord property for example). 

Many natural language devices and characteristics can be described by reference to 
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their position relative to one another. It would be next to impossible to describe a text 

without being able to define instances of objects being in paragraph, sentence, 

clause or phrase proximity to each other. 

This document structure ontology will also contain a Hash representation of the input 

text in order to uniquely identify the text that was input to the application. This is 

important if the output is to be re-used as it will enable the publication of the rdf 

triples of the knowledge base online and therefore contribute to the Semantic Web in 

a small way. A user can define a passage of text and perhaps create links from other 

applications or ontologies to the unique resource identifier (that will contain the hash 

code itself) that is output from this project. 

In order to classify different types of rhetorical forms an ontology of Rhetorical 

Devices will be created. This will include various instances of rhetorical devices, e.g. 

Adjunctio and Parelcon. This ontology will also contain Linked Data resources for 

various types of language structure characteristics. For example it will be necessary 

to describe words which have been shortened, e.g. often to oft. This could be 

described as a FinalCut OWL class since the final two letters have been cut to make 

this new word. Wherever it is necessary to store in the knowledge base patterns or 

characteristics of language not already captured they can be logged in the rhetorical 

devices ontology. 

It’s possible that more ontologies will be required to capture or model domains as 

they become evident. 

The overall output of these elements to the knowledge base will ultimately be 

combined by way of importation into a central OWL ontology. This will enable a 

consolidated view of the knowledge base to be obtained from a single OWL file and 

also enable relationships between the different ontological elements to be described. 

This overall ontology will also be the location of the SWRL rules stored in XML. The 

mechanism of converting SWRL rules in the form of Horn Clauses into an XML 

representation will be left to the Protégé SWRL Tab which can take the text input of 

the SWRL rules as Horn Clauses, validate the syntax based on the current ontology 

and then save into the OWL file in an XML format that’s reusable and standardised. 

As well as designing and developing ontologies we propose to use existing 

ontologies/knowledge bases where appropriate. There are many ontologies and 

Linked Data sources already in existence and more are being made available all the 
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time as part of the Semantic Web movement. We will endeavour to use this existing 

resource where possible. 

DBPedia [7] is an online database that uses Wikipedia as the input to create a huge 

knowledge base of information. It is central to the Linked Data and Semantic Web 

movement. Accessible via various mechanisms including a SPARQL endpoint we 

propose to query this data and automatically add knowledge to the knowledge base 

as required. 

Another ontological resource is WordNet [70] which is a lexical ontology used in 

linguistic applications and now part of the Semantic Web. WordNet provides 

information about word sense, antonyms, synonyms, and verb groupings etc. linked 

“by means of conceptual-semantic and lexical relations” [50], and can therefore 

provide relationships from text words to obtain alternative uses, meanings and 

groupings otherwise not automatically available. 

In this project it may be necessary to develop or populate ontologies automatically. 

There has been numerous research efforts to do this from statistical approaches 

[10,32,48,63] to linguistic/ontological methods [1,60]. 

There are numerous other ontologies and knowledge bases currently forming part of 

the Semantic Web such as SUMO [61], YAGO [36], Cyc [21] and Freebase [25] and 

many have been used in linguistic projects previously [16,17,38]. This project will 

investigate the difference and benefits of using either or a combination of data 

sources. 

The new standard method of querying the Linked Data resources and Semantic Web 

is via the SPARQL language [18]. It is based on the notion that Semantic Web data is 

to be stored in triples and probably in an RDF store. 

The Semantic Web [9,71] has instigated a new wave of technologies, tools and 

research. Tim Berners-Lee’s vision of a future World Wide Web where agents carry 

out complex tasks on behalf of users making use of a forest of linked ontologies 

being inferred and reasoned on by logic rules is very often the face of the Semantic 

Web. However, the ideas behind it – those of categorisation, modelling and 

documenting domains of knowledge and using rules to make inferences – are not 

new (for example in Knowledge Management, Pharmaceuticals etc). These two 

paradigms go together, but can exist in isolation. 
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Web Ontology Language (OWL) is ―aimed to be the standardized and broadly 

accepted ontology language for the Semantic Web” [4]. It provides the necessary 

expressiveness, well-defined syntax and (in the case of OWL DL) permits efficient 

reasoning support to construct a representation of a domain. 

Semantic Web Reasoning Language (SWRL) is a sublanguage of OWL, often 

marked up in RuleML [68]. SWRL combines Horn Logic-like axioms with an OWL 

knowledge base (ontology) in order to define a set of logic rules. 

“First-Order-Logic (FOL) is a flexible, well-understood, and 

computationally tractable approach to the representation of 

knowledge that satisfies many of the desiderata given in Section 

17.1 for a meaning representation language. Specifically, it [FOL] 

provides a sound computational basis for the verifiability, 

inference, and expressiveness requirements, as well as a sound 

model-theoretic semantics.” [33] 

By combining OWL and SWRL a highly complex knowledge base can be constructed 

that can very efficiently, accurately and deterministically model a domain and allow 

both inference on elements in the domain and reasoning on rules based on domain 

elements.  

Many research projects in the linguistics domain have investigated the benefits of 

using these technologies and techniques with significant success [8,26,38,34], but 

none use SWRL reasoning to our knowledge. 

According to Tim Berners-Lee there are four principles that ought to be adhered to 

when designing and implementing Linked Data: 

1) “Use URIs as names for things 

2) Use HTTP URIs so that people can look up those names 

3) When someone looks up a URI, provide useful information, using the 

standards (RDF, SPARQL) 

4) Include links to other URIs, so that they can discover more things” [77] 

This project will adhere to these principles wherever possible so that the outputs can 

go to form a small part of the Semantic Web / Linked Data movement if only in terms 
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of the technologies and formats used rather than being published as part of Linked 

Data. 

 

2.4 Protégé-OWL API 

In this project the Semantic Web technologies previously mentioned will be used 

within the Stanford University tool Protégé, a domain modelling and knowledge base 

/ ontology designer [59]. Protégé is open source Java software. This software is 

available freely online and comes with various add-ins, for example the SWRL Rules 

tab that allows SWRL rules as Horn Clauses to be input and validated. The Protégé 

GUI also allows Reasoning to be obtained via plugins such as DIG or Pellet. This 

project will only be using the GUI for designing ontologies and rules, however since 

the reasoning aspect of the solution will be done automatically as part of a process of 

analysis and output. 

The most important aspect of Protégé for this project is that it has a programmable 

API in Java. This will be used to populate the knowledge base from within a Java 

program and use reasoning to infer new knowledge. This tool can also provide an 

output file of the entire knowledge base (in RDF XML format) for the particular text 

domain being analysed. This API also enables access to the Jena Semantic Web 

programming framework [75].  

 

2.5 Rule engine 

We intend to use the Protégé built-in API class of SWRLRuleEngineBridge in order to 

enable reasoning via a Rule Engine. This “bridge provides a mechanism to: 

i) Import SWRL rules and relevant OWL classes, individuals and properties 

from an OWL model and write that knowledge to a rule engine 

ii) Allow the rule engine to perform inference and to assert its new knowledge 

back to the bridge 

iii) Insert that asserted knowledge into an OWL model‖ [76] 

The Bridge allows users to specify the particular rule engine to be used for inference. 

In this case we will use the default rule engine: ―An implementation class for the Jess 
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rule engine is supplied with the standard Protege-OWL distribution.‖ [76] The Jess 

API will be used under an academic licence provided by Westminster University. 

Within the Bridge API it is possible to programmatically create SWRL rules (or other 

kinds of logic rules) and run them dynamically. This is not preferred in this project 

because, since these rules would be programmed in Java and compiled on a server, 

they would not be reusable. The reusability of outputs via OWL ontologies and logic 

rules is one reason why the Semantic Web is a powerful mechanism. 

 

2.6 Storage and outputs 

In recent times there has been a movement away from traditional relational database 

server infrastructures. This is partly due to the explosion in the quantities of semi-

structured and unstructured data, e.g. HTML and XML (and a huge increase in data 

transport via the internet), but also because the costs of computing hardware have 

dropped significantly that it’s possible to host computing and storage relatively 

cheaply. Services such as Amazon’s Web Services [3] (2002), Microsoft’s Azure 

Platform [45] provide Cloud Computing and Storage and thereby enable data-storage 

and computation remotely which can potentially reduce costs and management 

requirements. As The Semantic Web movement progresses there will be a 

requirement to store more and more XML data online, sometimes in flat text files, but 

for larger datasets more often in database systems that can store and process XML 

efficiently [15,53]. The increase in XML usage has resulted in many XML-based 

database systems (XDMS), e.g. Sedna [31], TigerLogic [62] etc. 

 

2.6.1 HTML output 

The final output of this project is proposed to be a web application that allows input 

text to be uploaded and will output a report containing information about the 

processing of the text and details of where various files are stored, e.g. output RDF. 

The input text will also be displayed marked-up with any rhetorical forms that were 

found by the tool. Notes and background information regarding the particular 

rhetorical patterns will be provided to give valuable information to users. 



20 

Cliff O’Reilly 

 

In order to put this solution online a suitable server solution is required. It’s proposed 

to use an Apache Tomcat server since this provides Java programming environment 

(by way of jsp files) and is relatively inexpensive and readily available. 

 

2.6.2 Comparison measurements 

This tool needs to enable analysis and understanding of rhetorical forms and present 

them with a comparison measurement. This is an arbitrary process since we are 

aware of no other measurement in existence. It would only be valuable by comparing 

different texts and their outputs from the solution, however it’s an interesting exercise 

in obtaining quantitative results. Our proposal is to use a ratio of the number of 

sentences that contain rhetorical patterns, even if there is more than one pattern per 

sentence, to the number of sentences contained in the entire text. This measurement 

will be displayed via the HTML output. 

 

2.6.3 Other outputs 

As well as the visible output via the HTML interface of the tool we propose to 

enhance the information output and benefits to the Semantic Web by publishing the 

knowledge base online for each text input. This will be formed by various files 

including: 

i) automatically-created RDF output of the Protégé-OWL API Bridge – this is the 

entire knowledge base 

ii) a text file log of the processing steps and comments of the program as it ran 

through the analysis 

iii) the original source text in a txt file 

iv) the output of the GATE analysis in XML format 

All these output files will be named using the unique hash file generated 

automatically by the program at execution. 

By storing all these documents and notifying the user of the hash code and the online 

location of these files they can be reused within the Semantic Web framework. 
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2.6.4 The Application 

The HTML output already described is the proposed delivery method of an 

application that will enable users to upload text and receive annotated text back as 

an output. This annotation serves a number of purposes, of which the benefits to 

natural language processing and the Semantic Web are already described. Further to 

this the application itself is proposed to provide benefits to users who want to locate 

automatically rhetorical patterns and figures of speech in their own text and that of 

others. This may be useful for a user for various reasons such as for a scientist trying 

to reduce the figures of speech in a scientific paper, or an English student trying to 

increase the rhetorical content of an essay and thereby the persuasive power of their 

prose. Political analysts or historians could also highlight rhetoric in speeches or 

historic texts for various benefits. 

 

2.7 Method 

We propose to create a program written in Java that will provide the functionality to 

go some way to solve the problems described above. The method to create the 

program should follow these broad steps: 

i) Develop a suite of OWL ontologies to describe elements within the domain of 

natural language text and the concomitant domains resulting from further 

analysis 

ii) Develop a suite of logic rules using SWRL that can augment the knowledge 

base with rhetorical devices, figures of speech and RST annotations from 

reasoning on the knowledge base 

iii) Enable text to be input by a user 

iv) Automate parsing by the algorithms enabled via GATE 

v) Automate population of a knowledge base using the Protégé-OWL API 

vi) Test the validity of the output by inputting text known to have rhetorical 

patterns and also text that does not 

vii) Develop a user interface published on the internet that enables all the above 

plus outputs a suite of files that effectively publishes the knowledge base 
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for the input text and forms part of the Semantic Web by virtue of the 

technologies used 

This project is seen as part of a first step along the long road of research necessary 

to solve the problems described previously, e.g. computers cannot represent natural 

language meaning very well. As such it’s important that any outcomes are re-usable 

not just within the Semantic Web domain, but within the field of Computational 

Linguistics involved in language processing. For example the proposal must create 

generic and specific knowledge around language elements and the knowledge base 

built by this project will contain items that are usable both for textual processing, but 

also can be re-used in future analyses of natural speech or non-English text. 

 

Chapter 3 - Related Works 

Although Discourse Parsing, rhetorical analysis and the Semantic Web have many 

years of research history the fields have rarely been combined. We review here four 

research papers which have either used an ontological approach to language 

processing or have investigated automatic processing of rhetoric, specifically 

Rhetorical Structure Theory or a combination of these approaches. 

 

3.1 Paper 1 – OWL ontologies as a resource for discourse parsing – 

ontological approach to discourse parsing using RST 

Bärenfänger et al [8] developed an ontological approach to discourse parsing with 

RST. They produced two ontologies in order to develop their Generalised Annotation 

Parser (GAP): a novel RST taxonomy and the GermaNet German lexicon both using 

OWL DL ontologies. Using Prolog rules, German text is analysed through a 

multilayer, iterative parser in order to annotate the text for RST relations.  

Using the classed relations of RST their RRSET ontology further categorises RST 

relations, see Figure 3. Their extended set of relations was formed by examination of 

previous research (Carlson and Marcu (2001) and Hovy and Maier (1995)), but 

specifically for the analysis of rhetorical structure in scientific journal articles. 

Interestingly their RRSET ontology modelled RST relation as OWL classes rather 

than OWL object properties. This was because they wanted to declare disjointedness 
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between relations and also allow hierarchical inheritance of relation properties. This 

is recommended as good practice for some situations [69]. The relationships 

between relations in the ontology are facilitated via rdfs:subclassof constructs, 

underspecified classes and multiple inheritance. Object properties hasNucleus and 

hasSatellite are used to indicate the role of the relation [41]. Figure 4 shows a 

fragment of the RRSET OWL ontology. 

The second most common RST relation in their corpus was Elaboration. It was split 

into several sub relations based on the types of signals or cues that could be used to 

discover them. The following table shows examples of how this was broken down: 

 

RRSET Relation (subset) Cue(s) / Discourse Marker(s) Lexical-semantic relations 

Elaboration-Definition Document structure cues, e.g. 

“<doc:glosslist>” 

- 

Elaboration-Example Often signalled by lexical discourse 

markers “z.B.”, “Beispiel” or 

“beispielweise” 

- 

Elaboration-Specification Syntactic and punctuational discourse 

markers (e.g. non-sentential phrase 

within parentheses) 

- 

Elaboration-Derivation - Concept relations like 

Hyperonymy/Hyponymy, 

Holonymy or Meronymy 

Elaboration-Continuation - Lexical relations like 

Synonymy, Pertainymy 

Elaboration-Restatement - Lexical relations like 

Synonymy, Pertainymy 

Elaboration-Drift - Lexical relations like 

Pertainymy 

Table 3.1.1 – Examples of RRSET Relations 

In order to identify Lexical-semantic relations a second OWL ontology was defined 

based on the lexico-semantic net GermaNet (Kunze et al., 2007). Two approaches to 

using this ontology in the GAP parsing system were direct consultation and by 
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calculation of auxiliary lexical-semantic components by a lexical chainer or anaphora 

resolution system and then made available to GAP as additional layers in the input 

text. According to the authors GermaNet’s coverage of German seemed not high 

enough (59.17% only) so they discarded the first approach. 

 

 

Figure 3.1.2 - RRSET ontology of RST relations 

The GAP parser takes primary textual data and XML annotation layers as input which 

are converted to a Prolog fact base. The behaviour of the parser is controlled by a 
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set of XML Reduce Rules. These rules are formulated from the cues, markers and 

lexical-semantic rules found to discover the RST relations, shown above. See Figure 

5 for schematic of GAP. 

 

 

Figure 3.1.3 - Fragment of OWL ontology RRSET 

The Reduce Rules are converted to Prolog to be used directly by the parser and 

contain access predicates which express connections between annotation layers, 

e.g. identity(layeri:elementx, layerj:elementy) or text-inclusion(textvalue, 

layeri:elementx)  or also application-dependent predicates which refer to the schema 

information of layers. 
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Figure 3.1.4 - Generalised Annotation Parser (GAP) 

 

In practice due either to ambiguities in language or the structure of the input and 

when there are no further indicators there results in more than one Reduce Rule that 

can apply to a text segment. In this case the lowest common superordinate relation 

according to the RRSET ontology will be used. This is derived from the subclassOf 

property that holds between classes. 

 

3.2 Paper 2 – Using part-of-speech patterns and domain ontology to 

mine imprecise concepts from text documents – ontological approach to 

language processing 

Abulaish et al [1] present “a system that uses part-of-speech patterns and domain 

ontology to extract imprecise concepts by using linguistic variables – very, more light, 

strong”.  

There is extensive research in the field of Information Extraction, but usually any 

information extracted by a system is assumed to adhere to precise concepts. In 

practice precise concepts are not often apparent and may actually be vague and 

imprecise. The authors’ chosen research domain is wine documents, but can be 

applied to any domain. In this domain terms such as “very light” or “less strong” are 
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not precisely defined. Different actors on this resource have not agreed the precise 

semantics, however by using a common model (ontology) interpretation an 

information exchange can be achieved without prior knowledge. 

The W3C wine ontology is analysed in terms of its properties flavour, color and body 

(e.g. flavour{delicate, moderate, strong} ; color{red, white, rose} ; and body{light, 

medium, full}). The authors looked at wine documents online and show that there are 

many terms used which do not match to the W3C wine ontology. They propose: 

a) development of a fuzzy ontology 

b) a schema of a knowledgebase created from a) and using the two together to 

extract information from unstructured text 

c) store unstructured information in a structured knowledgebase 

The system proposed (see Figure 6 for schematic diagram) consists of an Ontology 

Editor which creates the fuzzy ontology based on the domain ontology and resources 

qualifiers (fuzzy concept modifiers), the Document Processing Agent (DPA) which 

comprises a document parser, a part-of-speech (POS) tagger and a term filter. The 

DPA chunks the input text, tags the words with the POS tagger and filters unwanted 

tags. The output is a ternary tree structured document which, together with the fuzzy 

ontology are used by the Knowledgebase Instance Generation Agent (KIGA) to 

populate the new knowledgebase. 
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Figure 3.2.1 - proposed system schematic 

Using Protégé the authors define a fuzzy ontology structure incorporating qualifiers - 

usually English adverbs, e.g. “very”, “slightly”, “less” etc. These are used in 

combination with the pre-defined domain value restrictions, e.g. “delicate”, “light” in 

the case of the wine ontology. In this paper the qualifiers considered in relation to the 

wine ontology properties are:  

Domain Property “Fuzzy” Qualifiers 

Color {null, light, pale, bright, dark, deep} 

Flavor {null, slightly, very} 

Body {null, very} 

Taste {null, slightly, semi, medium, very} 

 

Table 3.2.2 – Domain Properties and Fuzzy Qualifiers 

Null values are used to capture example in the text without qualifiers, e.g. “red wine” 

as opposed to “pale red wine”. 

New inherited classes are defined FuzzyColor, FuzzyFlavor, FuzzyBody and 

FuzzyTaste which are subclasses of both the value and qualifier classes. Property 
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values are next constrained using the allValuesFrom constraint to be either null or an 

instance of the corresponding fuzzy class. 

The DPA divides the input text into record-sized chunks and presents them to the 

POS tagger. An example of types of tags and some text tagged with parts of speech 

are shown below in Figure 7. 

 

 

 

Figure 3.2.3 - Part-Of-Speech tag types and an example tagged text 

 

The last step in the DPA is to filter out unwanted tags. In this case the X (Auxiliary 

verb) and T (article) tags are removed. The output is put into a tree structure by 

dividing segments based on commas, semicolons, prepositions (e.g. “with”), 

conjunctions (e.g. “and”) and full stops. 

The next step is for the KIGA element to parse the fuzzy ontology and create an SQL 

schema for the knowledgebase, implemented as a series of create table statements. 

Then the output of the DPA is used to populate the new relational database schema. 

Population takes a two-way approach – first, given a property name, the system 

looks for values to fill up the object description and then, for missing property names, 

property values from the ontology are used as pointers to fill up the attributes in the 

database. This process caters for language that doesn’t necessarily use property 

names when property values are present, e.g. “Roussanne is a light bodied, light red 

and very sweet wine from France’s Loire Valley” where the Color property is not 

named directly. There may be many null values passed to the database where 

properties are missing for the particular object being described. 
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Based on the following measures the results achieved were: 

Precision =  No. of relevant concepts extracted    = 92.89% 

  Total no. of irrelevant and relevant concepts extracted 

 

Recall =  No. of relevant concepts extracted  = 80.69% 

  Total no. of concepts 

 

Future work for this project is to learn from extracted information, e.g. incorporate 

new qualifiers, values and properties. 

 

3.3 Paper 3 – Beyond string matching and cue phrases: Improving 

efficiency and coverage in discourse analysis – automatic processing of 

RST 

Corston-Oliver’s 1998 paper [19] describes a discourse analysis component within 

the Microsoft English Grammar (MEG) system called Rhetorical Structure Theory 

Analyzer (RASTA). 

The author discusses various methods of recognising discourse relations, e.g. using 

references to world knowledge, reasoning with representations of propositional 

content and reliance on cue words, phrases or lexical repetition. The last method is 

preferred in this paper since the other two have questions that are “by no means 

resolved”.  

Pattern matching techniques like Regular Expressions have problems such as an 

unreliable ability to identify terminal nodes in RST analysis and potentially identifying 

two syntactic interpretations for a single lexical term. To alleviate these problems 

RASTA combines pattern matching (cue phrase identification) with an examination of 

syntactic analysis and logical form to identify discourse units. RASTA assigns 

heuristic scores to its judgements and by a series of checks against a set of 

necessary criteria. If the criteria match then a second series of cues is checked, see 

Figures 8 and 9 for examples. 
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Figure 3.3.1 - Necessary criteria for the Elaboration relation 

The text to be analysed (a subset of the Encarta encyclopaedia) is first segmented by 

MEG into clauses and RASTA then examines them relative to one another in turn 

(e.g. Clause1 versus Clause2) for the following RST relation types: 

AsymmetricContrast, Cause, Circumstance, Concession, Condition, Contrast, 

Elaboration, Joint, List, Means, Purpose, Result and Sequence. 

 

 

Figure 3.3.2 - Cues for Elaboration relation 

RASTA assigns higher heuristic scores to cue words and phrases than syntactic 

evidence, however a combination of several syntactic scores can have a higher 

influence on the overall score. 

The outcome of the criteria and cue tests is a plausible RST analysis. For example 

the Elaboration relation discovered (in Figure 10) via cues 2.4, 2.5 (between clauses 
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5.1 and 5.2) and via cues 2.4, 2.6 (between clauses 5.3 and 5.4). A Contract relation 

is also located in this example. 

Given the relations found by the analysis there are many ways that they could be 

joined into a structure over the whole document. RST trees provide a mechanism to 

achieve this, but there are potentially many such trees on the same document. The 

author constructs trees using Marcu’s algorithm. This algorithm analyses the different 

types of relations in terms of their symmetry of nuclei and satellite relations. Trees 

are then built from the bottom up by joining text spans that are in a relationship. As 

the number of trees grows the computations involved can become very large. This is 

made worse by the fact that Marcu’s algorithm grows all possible trees first and then 

cuts back ill-formed trees afterwards. Proposed in this paper is a backtracking 

algorithm that “applies the relations with the highest heuristic scores first in the 

bottom up construction of the tree”.  

The backtracking algorithm uses the counts of heuristic scores for each relation 

between nodes, ordered by value and at each step of constructing a tree discards 

trees that will end up as ill-formed. In this way the algorithm is more efficient and less 

computationally demanding. 

The heuristic scores used in the analysis of relations were initially set by the author’s 

knowledge and intuition, however subsequently have been modified with reference to 

the results. At the time of writing there were no corpora of RST analyses available 

(shortly after this paper Calrson, Marcu and Okurowski developed their tagged 

corpus based on 385 Wall Street Journal articles [14]). The author asserts that 

manual tuning of heuristic scores is necessary. Statistical analysis suggests that 

machine learning techniques would not improve the output. Performance indicates 

that the preferred tree is output after only 1.92 trees being calculated (with significant 

tolerances, however). 
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Figure 3.3.3 - RST analysis on Aardwolf text 

The author suggests extensions to RASTA that could improve performance, e.g. 

using domain-specific cues during the relation discovery phase and, by varying the 

type of heuristic scores, different types of analyses could be obtained, e.g. some 

texts can have simultaneously intentional and informational representations which 

cannot be distinguished in the current model, but by using two sets of heuristic 

scores (one for intentional and one for informational) the output could be split 

depending on the requirement. 

 

3.4 Paper 4 – Simple signals for complex rhetorics: On rhetorical 

analysis with Rich-Feature Support Vector Models – automatic 

processing of RST 

This 2003 paper by Reitter [51] takes a statistical – specifically machine learning – 

approach to analysing rhetorical patterns in text. After describing Coherence (the 

property of textual language elements to interrelate to one another to form a 

discourse) the author explains that world knowledge and inference are difficult to 

automate therefore a little linguistics knowledge and shallow processing of text are 

the best approaches. He next describes RST by explaining that relations can be 
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either Paratactic, containing two or more equally weighted spans of text with the 

same role assigned to each, or Hypotactic which is unequally weighted elements with 

the roles of either Nucleus or Satellite. This paradigmatic idea is extended into the 

formation of tree-structured analysis suggesting that there is only one structure that is 

faithful to the writer’s intentions, however Reitter recognises that he attempts to 

derive the most likely intention. 

Rhetorical parsing is mentioned with reference to RASTA and Marcu’s algorithm and 

also Marcu’s and Echihabi’s 2002 investigation using unsupervised machine 

learning. 

The author next looks at URML, an XML-based standard for rhetorical annotations. 

Since the ability for computers to “read” texts for linguistic analysis has become more 

important over time a standard markup format has been used based on SGML (a 

superclass of XML). URML has been used as a solution to various problems with 

documentation/markup of texts due to its underspecified approach (not requiring 

explicit markup of all information) and standardised methods. URML uses a 

referential rather than in-situ markup therefore necessitating indexing of relations and 

nodes which is relatively easy in XML. 

Reitter proposes to diverge slightly from the original RST by representing only binary 

relations, but this is allowed since the nucleus will be preserved and this is the more 

important element in terms of conveying meaning and also since multi-satellite 

relations can be preserved using binary structure in a hierarchical branching 

structure. Also, by analysis of the LDC corpus [14] he shows that only 9 out of 17962 

relations share a nucleus with others of a different type. 

The method proposed focuses on using various surface cues at various linguistic 

levels, e.g. morphosyntax, punctuation, lexical choice and discourse marker. These 

cues, however, do not map simply to RST relations, e.g. “even though” can signal 

either Concession or Contrast. The process for the analysis progresses as follows: 

1. Split relations into Classification Instances: 

The parser proceeds segment by segment through the document where each 

Paratactic node is split into several Classification Instances and Hypotactic nodes are 

converted to one Classification Instance. The Classification Instance is an 

intermediate data structure made up of a relation, a list of text span indexes and a 
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single span (in Hypotactic relations). A Feature is a function that assigns a scalar 

value to a linguistic pattern based on a single property of the Classification Instance. 

2. Transforming Classification Instances into Feature Vectors: 

Templates for Features derive from the training corpus and include: 

i) Cue words and pronouns: defined by the corpus and encoded with a 

positional value, e.g. beginning or end of the text span 

ii) Introduction of concepts: noun phrases occurring in notable locations can 

indicate specific meaning, e.g. in journalistic texts definite noun phrases 

with a common noun tend to refer to a concept already introduced in the 

text 

iii) Punctuation: colons, dashes, question marks etc 

iv) Part-of-Speech categories: types of words used at the borders of 

segments can help disambiguate relation types 

v) Lexical similarity: using Hearst (1997) a similarity measure can be used to 

reflect the semantic similarity of two text spans 

vi) Span length: the ratio of text span lengths (in words) is used as a feature, 

hypothesised based on intuition. 

Using the statistical machine learning approach of Support Vector Machines (SVM) 

the author supplies a training sample which outputs a model of inference which can 

be used on unseen examples. This is a classification technique which attempts to 

differentiate the target classes based on input vectors in effect creating a linear 

boundary between classes. Figure 11 shows an example graph. 

The data needs to be transformed into a linear feature space first using a kernel 

trick (in this case a radial basis function). The location on either side of the 

hyperplane (straight line in two dimensions) indicates the class of the instance and 

the distance to the line shows the confidence in the outcome. A binary SVM is trained 

on each class and the best solution chosen to be the one with the highest confidence 

score. 
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Figure 3.4.1 - large-margin separation output of SVM analysis 

The test corpora in this paper are the LDC Wall Street Journal collection of RST-

annotated texts (385 English language newspaper articles) and the Potsdam Corpus 

– a series of German language news commentaries published in the Märkische 

Allgemeine Zeitlung. The LDC corpus was converted into URML and part-of-speech 

tagged with all the existing relations normalised into 16 general RST relations. The 

Potsdam Corpus was manually annotated with RST using the RSTTool 3.1 and cross 

validated by different analysers to ensure an unbiased sample. 

The results are shown in Figure 12. They indicate excellent performance (for 

comparison the baseline measure of the Elaboration relation is 33.6%). 

Some of the more simple relations, e.g. Elaboration, Specification and Attribution are 

successfully annotated with this model, however some harder-to-discover relations, 

e.g. Cause and Result are not solved well. Cue phrases and Punctuation are 

determined to be the most important signals for classification accuracy. 
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Figure 3.4.2 - English and German model performance 

 

 

Chapter 4 – Architecture of LaROS 

In creating the solution for this project we actually employed an iterative development 

process, however each task will be described here in a logical order reflecting the 

proposed method from section 4.7. 

 

4.1 Ontological Design 

We realised that we would need ontological influence in a number of areas to create 

a working knowledge base. Therefore the first tasks involved in creating the solution 

were ontology investigation and design. In order to have as much re-use as possible 

we analysed existing ontologies for suitability for inclusion in the solution. Suitability 

was mostly confined to two characteristics: did the ontology have the entities and 

relationships required for the task and was it available in OWL format. The areas we 

would require ontologies for were  

a) the GATE processing output, including the Stanford Parser 

b) text entities and relationships 

c) higher level text entities and relationships 
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d) external entities and relationships and associated intra-ontology 

relationships 

e) rhetorical devices, figures of speech and RST relations 

 

The general approach of analysis taken was to model entities when they referred to 

real things or concepts, for example a word can be thought to exist in the context of 

written natural language; similarly a sentence or paragraph. It can also be said that a 

word will generally be related to another word that precedes it in a text, and also a 

word that succeeds it too (obviously unless it is the first or last word in the section), in 

a number of ways, but most obviously in the fact that the words are adjacent. Various 

words can also be said to be the first or last of their kind that appear within a parent 

entity such as a sentence or paragraph etc. Entities can be related to one another by 

relationships such as hasPararaph or hasWord. This kind of modelling can be done 

to a very detailed level if all relationships are modelled, however in this case we 

included entities and relationships only if we thought they would be either generally 

useful or had a direct implication on the rule system to be developed later in the 

project. 

We were unable to find an ontology that had this kind of model so we created one. 

This model eventually became the Document Structure ontology (see Appendix 1). 

This general approach of modelling entities, properties and relationships that can be 

thought to exist rather than a contrived set of entities was preferred. An alternative 

approach to modelling would be to use more specific entities such as 

firstWordInSentence or lastParagraphInDocument, but this seemed not to allow 

the flexibility of a more generic method and also would have created larger and more 

difficult-to-manage Domains or Ranges for OWL properties created later. 

The Document Structure ontology is central to many of the rules developed in this 

project. Most meaning in language involves the relationships between words or 

collections of words and their individual meaning and also the locational 

representation of the entities. This might be less important in a more inflexed 

language, however it would still be important to build into any knowledge base the 

notion of whether a word is a part of a sentence that has some specific kind of 

relationship with another part of the same document. This is achieved in this ontology 

by some of the properties mentioned previously. 
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Other important properties in this ontology include sameAsWord which relates two 

word class instances to each other by virtue of the fact that their orthographic 

representation is the same. It does not mean that the words have the same meaning 

and in fact one of the output rules from this project uses the fact that the same word 

in appearance can have different meanings in a particular manner giving rise to a 

known rhetorical device. The hasHashOf property relates the Doc class instance to a 

string value of the hash code which identifies uniquely the input text. 

The outputs of the various modules within GATE that create mark-up tags for the 

overall GATE output also needed to be modelled in the knowledge base. We couldn’t 

find OWL ontologies that provided what we needed so we developed two new OWL 

ontologies for this task. The LangTag ontology contains a mapping of each output of 

the Category tag, for example Verbs, Nouns and various sub categories are entities 

that are mapped to, based on the output category code from GATE. See appendix 2 

for the LangTag ontology diagram.  

Also derived from the GATE output is the Gate ontology (gate.owl). This is shown 

diagrammatically in Appendix 3. This ontology attempts to model some of the main 

entities that describe our input text and in fact most text documents. Derived from 

GATE are, for example, the word, Sentence and paragraph entities, which are 

OWL classes in the ontology. Also the properties that define the location of entities 

within the text, such as hasStartNode and hasEndNode were included in the Gate 

ontology. 

Where necessary the object terminology output from GATE was changed to reflect 

the ownership or entity type, for example the Length characteristic from GATE 

becomes the hasLength datatype property in our Gate ontology. Similarly the 

hasString datatype property represents the string value that is the word’s actual 

orthographic character representation. Another important property contained in the 

Gate ontology is the hasDependency object property. This relationship between two 

words is the output of the Stanford Parser GATE plugin. It allows words to be related 

to each other based on the role in the sentence. For example if a verb is related to 

the object noun in a sentence then the dependency values will be output by GATE. 

This is translated into the object property of hasDependency in the knowledge base. 

This allows us to analyse whether words perform certain roles together with other 

properties and if so to infer new knowledge. 
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Once we were able to describe the different aspects of our domain in terms of our 

ontological framework we began to develop the framework of further ontologies that 

model more complex behaviour and also links to outside information such as Linked 

Data. The VerbNounCombo ontology is a small OWL ontology that has two important 

classes: UnusualNounInCombo and UnusualVerbInCombo. In our domain it’s 

possible that a verb/noun combination will be an unlikely pairing. This could be for a 

number of reasons (we rule out errors), but one in particular is the deliberate use of 

an unusual pairing of words for rhetorical effect. Details of this rule will be shown 

later, but these two classes are used to define verbs and nouns as being used 

unusually. 

Two more ontologies are used to model rhetorical content. The Rhetorical Devices 

ontology has the class of RhetoricalDevice which also has a number of instances in 

the same OWL file which equate to the rhetorical devices (or figures of speech) that 

are to be located by the tool. This list is very small compared with the number of 

possible devices that have been documented, however this project doesn’t have all 

patterns in scope so only about 20 are listed as of this project’s completion. Related 

to the RhetoricalDevice class is the hasRhetoricalDevice object property. This 

OWL object property relates the devices to the Doc instance in question thereby 

allowing the population of the knowledge base with the knowledge that the device 

has been found. In order to specify the exact location of the pattern the Gate 

properties hasStartNode and hasEndNode are used. This enables the user to 

pinpoint exactly where in the document any patterns have been found. 

This ontology also contains some more complex descriptive classes that are used to 

add more information to the knowledge base. For example when a word has a 

number of characters removed from its middle for effect this is classed as a 

MedialCut, for example “libary”. This is not classed as a misspelling but a deliberate 

play on words. Similarly for characters cut from the end of a word, such as “oft”, the 

word would be classed as FinalCut. The EpitheticalName class is used to hold 

specific names of people used in a rhetorical fashion. The use of instances of these 

classes contained in the OWL ontology enables the processing mechanism to scan 

the input text for these particular patterns and tag the resulting information in the 

knowledge base. 

The second rhetorical content ontology is the Rhetorical Structure ontology which is 

designed to model RST analysis within the knowledge base. This simple OWL file 

contains one important class – RhetoricalStruct. The class has a number of 
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instances which equate to RST relation types. In a similar way to the 

RhetoricalDevices ontology the instances can be related to a Doc instance and also 

have start and end locations logged. 

The last ontology used in this project is the Lassoing Rhetoric OWL ontology. This 

ontology brings together, by importation, all the previously-mentioned OWL files. It 

also imports, by namespace reference, classes from DBPedia and WordNet. Once all 

the classes, properties and individuals are combined in one ontology SWRL rules 

can be defined more easily. The ontology has a suite of SWRL rules that act upon 

the knowledge base to add new knowledge when executed in the correct context. 

 

4.2 Rhetorical forms and logic rules 

This project’s goal was to discover rhetorical forms in text. An example of a rhetorical 

form is Anaphora. This occurs when there is “repetition of the same word at the 

beginning of successive clauses or versus” [40]. An example is found in Winston 

Churchill’s speech to Parliament in 1940 when he uses the phrase “We shall” at the 

beginning of various clauses, for example “We shall fight them on the beaches”. In 

order to discover this pattern in text using a knowledge base and logic rules we 

needed a number of entities namely a Document, a paragraph, a sentence and at 

least two clauses. We also need the knowledge elements to be related such that a 

clause that has an adjacent clause and has the same first two words (by 

orthography) can be related to a sentence and also a parent paragraph and then to a 

parent Document. This is a very basic logical test and can be summarised by the 

following syllogism: 

IF Document HAS Paragraph 

AND IF Paragraph HAS Sentence 

AND IF Sentence HAS Clause A 

AND IF Sentence HAS Clause B 

AND IF Clause A HAS Word X 

AND IF Clause A HAS Word Y 

AND IF Clause B HAS Word F 

AND IF Clause B HAS Word G 

AND IF Word X IS THE SAME AS Word F 

AND IF Word Y IS THE SAME AS Word G 

THEN Document HAS Anaphora 
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We assumed for this rule that the meaning of the word is irrelevant. It’s simply the 

repetition of the same orthographic form that signals Anaphora. An Anaphoric pattern 

could, of course, extend to more than two matching clauses and vary over more than 

two adjacent clauses also, however for this project we are only concerned with 

developing a single rule for each rhetorical pattern selected. This solution is not 

intended to be a complete rhetorical device locator. 

This syllogism can be converted to Horn Clauses quite easily and therefore we were 

able to generate a suite of SWRL rules as Horn Clauses based on the logic of 

discovering new knowledge from the knowledge base built up for the text under 

analysis. The SWRL rule for Anaphora is this: 

DocStruct:Doc(?h) ∧  DocStruct:hasParagraph(?h, ?i) ∧  
DocStruct:hasSentence(?i, ?z) ∧  gate:word(?x) ∧  DocStruct:hasNextWord(?x, ?y) ∧  

gate:Sentence(?z) ∧  DocStruct:hasFirstWord(?z, ?x) ∧  gate:word(?a) ∧  
DocStruct:hasNextWord(?a, ?b) ∧  gate:Sentence(?c) ∧  

DocStruct:hasFirstWord(?c, ?a) ∧  DocStruct:hasNextSentence(?z, ?c) ∧  
gate:hasString(?x, ?d) ∧  gate:hasString(?y, ?e) ∧  gate:hasString(?a, ?f) ∧  

gate:hasString(?b, ?g) ∧  swrlb:equal(?d, ?f) ∧  swrlb:equal(?e, ?g) ∧  
gate:hasStartNode(?x, ?j) ∧  gate:hasEndNode(?b, ?k) → 
RhetDev:hasRhetoricalDevice(?h, RhetDev:Anaphora) ∧  

gate:hasStartNode(RhetDev:Anaphora, ?j) ∧  gate:hasEndNode(RhetDev:Anaphora, ?k) 
 
 

The pre-existing instance of RhetDev:Anaphora is used in the consequent to create 

an object property relationship to the Doc instance. The Anaphora object is then 

related to start and end nodes for future use within the tool. 

Since Protégé allows the input and validation of SWRL rules in the form of Horn 

Clauses all the rules in this project were validated using Protégé against the 

Lassoing Rhetoric OWL ontology. Each rhetorical form was analysed and then a 

SWRL rule was designed using the knowledge base elements. Our SWRL rules are 

listed in Appendix 9.  

Since SWRL is not a productive rule system it was not possible to have instances 

generated from a rule. All variables in the rule must refer to existing entities or 

literals. The effect of this was that in order to have rhetorical forms “discovered” they 

must already exist at the time of inference, i.e. be a part of the knowledge base when 

the rule is executed. As already mentioned the various instances for the 

RhetoricalDevice class are contained in the Rhetorical Devices ontology. These were 

used in the Consequent of each rule and came into play wherever all the atoms in 

the Antecedent of the rule were true.   
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As the SWRL rules were designed and saved into the Lassoing Rhetoric OWL 

ontology via Protégé they were converted into an XML representation. The XML 

representation consists of a swrl:Imp outer tag and contains inner swrl:body and 

swrl:head tags. These hold the antecedent and consequent parts of the Horn Clause 

respectively. 

An important output of this project is that these rules are available online as part of 

an ontology and in a format that is re-usable in other work. 

 

4.3 Parsing with GATE 

The GATE infrastructure is a software environment that allows the development of 

processing on human natural language text. It is Java software that comes with a 

sophisticated user interface from which various Pipelines can be constructed. A 

Pipeline takes a document as input and allows various plug-in algorithms, called 

Processing Resources, to be run in sequence with a final marked-up document 

output at the end (the plug-in framework is called CREOLE). The output desired for 

this project was the text marked-up with characteristics such as Paragraph, 

Sentence, Word, Space and for each Word there should have been the position in 

the document and type of word, e.g. noun, and also whether any letters were 

capitalised etc. We investigated various Pipelines and plug-ins to achieve the desired 

output. Despite the good quality output of the default Processing Resources and the 

ANNIE framework of plug-ins we settled on using the Stanford Parser plug-in 

combined with a Regular Expression sentence-splitter and the default ANNIE 

Tokeniser. The Regular Expression sentence-splitter performed better than others 

dues to its categorisation of punctuation being part of the sentence. The ANNIE 

Tokeniser is the preferred method of locating Tokens (words, spaces and 

punctuations) by the Stanford Parser and we saw no reason not to use this plug-in. 

We investigated a number of different Processing Resources parsers such as the 

OpenNLP, OpenCalais, LingPipe, RASP and SUPPLE. All these parsers were found 

not to work as effectively for our needs as the Stanford Parser for various reasons 

such as having a requirement to be unlocked with a licence key and requiring specific 

executables to be in specific folders at runtime. We found Stanford to be the only one 

that worked without much tweaking and to our needs. 

The Stanford Parser output is a Syntax Tree Node and Dependency relationship. 

This parsing of the text creates a tree-like representation of the sentence with the 
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ROOT (or Sentence) at the top and branches that divide below depending on the 

clauses, phrases and words and their roles in the sentence. An example tree parse is 

shown below: 

 

Figure 6.4.1 An example parse tree [80] 

This hierarchy is achieved in XML by a dependency chain being created between 

entities at each level of the hierarchy. Only a small part of the output of the Stanford 

Parser is used in this project to determine where words are related to one another so 

that rhetorical forms can be shown, however this output is very powerful and could be 

used for much more. 

The automated output from GATE specified in this solution is stored as an XML file 

(titled gateprocessing_hash.xml – where hash is the specific hash code of the input 

text). 

 

4.4 Populating the Knowledge Base 

Armed with the GATE XML data we next set about creating our knowledge base. 

This was done using the Protégé-OWL API which enabled the creation of a virtual 

knowledge base initially consisting of OWL classes and properties. The API is 

pointed to the OWL ontology - LassoingRhetoric.owl – for validation of the OWL 

entities. Step by step the GATE output is analysed and instances are created for the 

various classes and properties from the ontology. This occurs entirely in memory. 
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At the stage where all the paragraphs, sentences, spaces and words with their 

associated properties such as hasWord or hasFirstSentence are added based on 

the GATE output (thereby the input text) we started on the creation of more 

knowledge based on external data. By reference to the ontologies created earlier of 

RhetoricalDevices and VerbNounCombo we were able to scan the text and add 

properties for the MinusComparison, PlusComparison EpitheticalName and 

SuperfluousWord classes. 

We were also able to scan the text for three adjacent words with the same initial 

letter. Since this might be a signal for the Alliteration rhetorical device we add the 

hasFirstCharacter datatype property for relevant instances of the word class. 

The next step was to refer to external knowledge bases not previously created by us. 

The British National Corpus is an online resource of word frequencies derived from 

thousands of source texts. We were able to remotely query this resource with a 

particular combination of noun and verb words selected from our text in order to 

detect previous usage of the combination. If the British national Corpus had no 

record for the query then we were able to add the UnusualNounInCombo and 

UnusualVerbInCombo properties to our knowledge base for the two word instances 

in question. 

A further Linked Data analysis was undertaken based on the DBPedia online 

resource. The rhetorical form of Historic Present can be signalled by a present tense 

reference to a person no longer living. By querying DBPedia dynamically with the 

name of the individual from the text we were able to determine whether firstly they 

were a person at all i.e. did they have a birthdate property and also are they alive, i.e. 

did they have a deathdate property. The resulting records were then used to populate 

the knowledge base with the Person class as a relation of the word instance being 

considered. 

A further example of a Linked Data query we were able to produce was the 

information extracted from WordNet. WordNet is another Linked Data resource, but 

related to the English language entities and their synonyms, antonyms and various 

other relationships that words have. As far as we could determine there is no 

WordNet SPARQL interface, but we were able to query their online XML resource. 

It’s a very large resource and we only were able to use a tiny fraction of its size, but 

whenever we encountered a verb word in the input text we were able to query the 

online presence to have returned the synsetID. The synsetID is a unique reference to 
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the group of synonyms to which the particular word belongs, for example the verb to 

have belongs to the synonym set of “have, have got, hold. The same word can also 

belong to different synonym sets, however for our purposes it was enough to be able 

to return a single synonym set and then query a local copy of Extended WordNet [81] 

to furnish the application with the synonyms of the word in question. 

Various other data sources on the Semantic Web were investigated for this project, 

however not many of them provide the kinds of information easily obtainable that 

would benefit this simple knowledge base we were creating. Sources such as SUMO, 

YAGO, Cyc and Freebase provide excellent resources, but without having 

undertaken further research into this problem it was not possible to use them as 

resources at that stage. 

After all these various analyses the virtual knowledge base was complete for our 

purposes. It was then possible to execute the SWRL rules dynamically. Our program 

was enabled so that the report file that was output would contain descriptions of each 

rhetorical pattern located. The entire knowledge base was then output to an RDF file 

which contained all the original ontology data (from LassointRhetoric.owl) and also all 

the new individuals populated from the processing. Crucially this RDF file was to be 

uploaded to an online location. 

 

4.5 User Interface 

We like the OpenCalais approach to displaying annotated text [82] so we tried to 

emulate this with our own annotations used instead. Creating a page that replicated 

the OpenCalais approach was straightforward in that the input box is a 

straightforward html text field that is submitted via an HTTP request to the server and 

then translated into the input text for the Java classes to process. 

Once we have the knowledge base populated and the SWRL rules have run we were 

able to cycle through each inferred axiom and insert it into the text with some HTML 

and Javascript that enabled us to display the original text together with coloured 

spans showing the rhetorical patterns discovered. This is the output viewable on 

screen and the user can change the checkboxes to view any or all of the discovered 

rhetoric. 
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Chapter 5 - Implementation 

In the initial phase of this project we weren’t sure how to implement the design, but it 

soon became obvious that since GATE and Protégé-OWL both offered extensive 

Java APIs that we should follow this lead and develop a Java application. This 

enabled us to link directly to these APIs and take advantage of the functionality 

already present. Java is a computationally-complete language which was important 

and is also free to program and implement which suited our needs. 

The overall architecture of the Java project is shown in Figure 5.1 and a more 

detailed diagram showing the interactions with the Java classes is shown in Figure 

5.2. 

 

 

Figure 5.1 – The overall Java architecture 

 

There are a number of methods of creating a Java program from basic text files 

coupled with a compiler to an IDE which manages many of the variables required to 

design, write and compile a project. We chose NetBeans 6.9 which is a mature IDE 

and is available under a GNU General Public Licence. 
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Figure 5.2 Algorithmic representation with reference to Java classes 

 

5.1 GATE API 

We began by investigating the APIs of GATE and Protégé to understand the best 

implementation. The APIs were fairly straightforward even if the terminology was 

quite technical, but when implementing them it took us a long time to develop a 

working solution. The key feature for us from the GATE API is that a Pipeline can be 

designed in the GUI and then saved as a gapp XML file that describes the Pipeline in 

enough detail so that the file can then be imported programmatically via the API 

without the need to create Java bespoke routines to do the same thing. This saved a 

lot of effort and in the end we decided to use the Stanford Parser-provided gapp file 
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called sample_parser_en.gapp. This file provided a Regular Expression sentence 

splitter, default tokeniser and the Stanford Parser algorithm too with the following 

settings (amongst others):  

1. addPOSTags=true  - this setting ensured that the parser added Part-

of-Speech tags for each Token 

2. addDependencyFeatures=true – this setting ensure that parse tree 

dependencies were included in the output 

3. addDependencyFeatures=true – this setting adds dependency details 

to the Token elements in the output 

To implement the GATE algorithms in a Java NetBeans project the Java Archives 

must be imported to the project. The jar files are supplied with the standard GATE 

download so it was a simple task to achieve the import. Once the gapp file has been 

specified it’s a fairly straightforward task within the GATE API to produce the XML 

output. Initially a CorpusController class is instantiated and then a Corpus object is 

passed as a parameter in the setCorpus() method. A Document object of the file 

containing the input text is passed via the add() method and then the execute() 

method is called. It’s then just a case of streaming the result out to an XML file via 

the FileOutputStream class and clearing up the objects. 

 

5.2 Protégé API 

The Protégé-OWL API is similarly straightforward. In our case it is a wrapper for the 

Jena OWL Model created by the createJenaOWLModelFromURI() method which 

takes the URL of the OWL ontology as a parameter. In our case this is the 

LassoingRhetoric.owl ontology since it contains all our entities and logic either 

through imported OWL ontologies, for example, or the SWRL rules. After adding the 

relevant jar files to the project we next had to create an instance of the 

OWLNamedClass class for each OWL class that was to be used in the knowledge 

base, e.g. gate:word. The same was required for object and datatype properties via 

the OWLObjectProperty and OWLDataTypeProperty classes respectively. 

Next the GATE output was scanned many times to populate the OWL Model with 

instances – as RDFIndividual objects – and the concomitant properties – via the 

addPropertyValue() method that were discovered by manual manipulation of the 
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XML via the Java code. Some characteristics were represented by the rdf:type 

predicate rather than OWL properties – this was done using the addRDFType() 

method of the RDFIndividual object. 

The decision to represent some characteristics as properties and some as rdf:types 

was based on both the nature of the characteristic, but also the use to which the 

characteristic would be put. For example we decided to represent categories of 

words such as Noun and Verb within the LangTag ontology as classes rather than 

have a single class of, for example, LangTag which would have many instances with 

which to relate to via object properties. We made this choice because of the nature of 

the hierarchy of classes, i.e. there are many types of verb which are all sub classes 

of the Verb class. This cannot be represented easily as an OWL property 

relationship. 

Finally a SWRLRulEngineBridge class was instantiated for the OWL Model which 

then enabled reasoning to be undertaken with the 

importsSWRLRulesAndKnowledge() and run() methods. The final output to XML 

was handled by the getJenaModel() and write() methods. 

After the Bridge has run it was possible to access the Inferred Axioms via the 

getInferredAxioms() method. These were cycled through and sorted in order to 

populate an array that goes on to form the final output. 

 

5.3 HTML output 

The final output is an HTML page containing the original input text and a set of 

checkboxes each referring to a particular rhetorical pattern that was discovered. 

When the box is checked then the appropriate spans of text that contain the 

rhetorical form are highlighted in the same colour as the checkbox – see figure 5.3.1. 
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Figure 5.3.1 screen shot of LaROS output 

The HTML is generated as a text string piece by piece within the Java code. The 

Inferred Axioms are cycled through and used to create the checkboxes which link up 

via Javascript to various HTML span tags that contain the background-coloured 

rhetorical forms, also generated via cycling through the inferred axioms. The 

completed HTML string is output via a PrintWriter class to the html_hash.html file. 

At the same time a css file is generated and saved as css_hash.css in the same 

folder as the html file. 

 

5.4 Java class structure 

Figures 5.4.1 and 5.4.2 show UML Class Diagram and the UML Sequence Diagram 

for this application. The application design did not follow strict Object-Oriented 

Programming principles since the task wasn’t actually appropriate for it. The overall 

task was more sequentially-based therefore a mixture of OOP and sequential-type 

programming was used. The main classes are GATE_Processing, PopulateKB and 

OutputResults which are controlled from the Main class. 
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The sequence diagram shows the various logical paths the program takes to produce 

the output. 

 

Figure 5.4.1 UML Class diagram 

 

 

 

Figure 5.4.2 UML Sequence diagram 
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5.5 Data storage  

There are a number of data storage requirements for this project.  

1. the ontologies need to be stored and made accessible online 

2. the various outputs from the applications such as the GATE processing and 

knowledge base should be held online after production 

3. the application code needs to be stored and executable 

Since the OWL ontologies are flat files storing them online is a simple task as long as 

an appropriate domain name and mechanism for Dereferencing can be undertaken in 

line with the Semantic Web principles. All our ontologies are stored online at our own 

domain of repositori.com. This enabled us to create folders and upload and amend 

easily our own files. These files should not be moved once published in order to 

maintain any applications built in the future that use them. It is proposed that this 

domain be a repository for these and future ontologies as they are developed in this 

domain and others. 

We undertook an investigation of a variety of online storage and processing facilities. 

Initially we thought we would be able to purchase a dedicated server and have it 

connected online permanently in order to publish the application. This proved to be 

too expensive and not as flexible as have a virtual computing solution. We trialled 

Amazon’s Elastic Compute Cloud product for several months and found it to be easy 

to use, flexible, efficient and reasonably priced. We will be using Amazon’s Web 

Services in future for the development of this project and others. 

 

Chapter 6 – Evaluation 

 

6.1 Addressing objectives 

This project’s main objective was to develop a computer application that could 

discover (“lasso”) rhetorical patterns of text using Semantic Web technologies. We 

have succeeded in achieving that objective. The over-riding objective, however, was 

to produce Meaning Representations in order to assist with the semantic analysis of 
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natural language. This objective is more difficult to assess, but if we consider that a 

meaning representation can be thought of as simply a representation of a language 

element formulated in a particular meaning representation language then we can say 

that have succeeded in this objective too: First Order Logic is considered a meaning 

representation language [33] and SWRL (in Horn Logic terms) is a variant or First 

Order Logic. Our work in this project has produced a number of Horn Logic terms 

that describe natural language elements and in fact go further to enable inference on 

these elements to “discover” new knowledge, i.e. a particular rhetorical form whether 

it’s a figure of speech or a Rhetorical Structure Theory relation. 

Evaluating the proposal we can say that we did create a parsing solution which lead 

to the development of the knowledge base and that we organised the output along 

the lines of Semantic Web development. Going further we can say that the creation 

of the complex knowledge base of entities, properties and relationships for each text 

input and the fact that it is available online and accessible as part of the Semantic 

Web is another success. 

Our ontologies that drive the knowledge base are all published online at domains we 

own and maintain. The SWRL rules designed to discover the textual forms 

mentioned previously are all available online in the Lassoing Rhetoric OWL ontology 

and in XML structure. 

There were a number of problems and drawbacks, however which will be discussed 

later in this section. 

To test the application we selected a string of text for each rule we wanted to verify. 

This text was selected deliberately, knowing that it should be discovered because it 

surely contained the rhetorical form searched for – in fact most of the text selections 

were from our rhetorical device handbook [40]. The full list of test texts is shown in 

Appendix 14. When entered into the application each test correctly showed the 

rhetorical form to be highlighted. We are happy that the rules described in this project 

do discover successfully the rhetorical patterns as intended. We also input various 

exceptional speeches from history that we thought would contain rhetorical content to 

view the results. Whilst not necessary to show that our process works it was 

interesting to view the output. In some cases we were not expecting to see rhetorical 

forms where we did. This shows a valuable benefit of this tool – it can highlight 

knowledge not previously known. 
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We must mention that the rules generated are not complete. It cannot be said that all 

instances of the rhetorical forms would be found by the rules designed herein. This 

is, however, expected. Natural language and rhetorical devices are complex forms of 

communication and we cannot expect to pinpoint all with simple logic rules. 

We also assume that text input is well formed and correct, e.g. in order for our rule to 

find successfully the form of Catachresis we have to assume that the verb/noun 

combinations are intentional, e.g. shave grass / lasso rhetoric etc. Any mistaken text 

input could easily be misconstrued as rhetorical even though it is not. This is a 

complex issue, however. An example is the rhetorical device of Enallage. This works 

by deliberate mistakes being taken at face value for rhetorical effect, e.g. the use of 

the word “wot” instead of “what”. 

Our major focus in this analysis has been on figures of speech. It was deemed 

appropriate to start with simpler forms of rhetoric before moving on to try and find 

more complex forms and also to search for RST relations. We have been successful 

in lassoing many kinds of rhetoric including RST although we have not had extensive 

time to extend the RST analysis and build on the discovery of two relation types only. 

The development of a Rhetorical Content measure albeit simple and easily 

calculated is again another success for this project. It was an objective to have a 

repeatable, comparable measurement between input texts and the measurement we 

put in place completes the requirement capably. 

 

6.2 Comparison 

With regards to related works previously mentioned we will take each paper in turn 

for comparison with our research outcomes. There are numerous research papers in 

existence that have similar goals to ours. None that we have seen have used the 

same mechanisms as our project, however, but in principle could be said to be very 

similar. 

Our approach is similar in parts to Bärenfänger et al [8] in that an ontological basis 

for language processing is undertaken. Further, logic rules (although in their case 

Prolog rather than SWRL) are used to annotate texts for Rhetorical Structure Theory 

forms. This again is similar to our approach. While we concentrate initially on the 

discovery of figures of speech this paper searches for the more complex RST 

relations. They do not show results as yet so we cannot compare the outputs. They 
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also do not mention the adjunction of Semantic Web technology and Linked Data to 

add world knowledge whereas this is a central theme in our project. 

Abulaish et al [1] focus their research on analysing text patterns with a view to adding 

knowledge via fuzzy matching. In order to facilitate the fuzzy matching an ontological 

approach is taken to managing knowledge of the domain (in this case a wine 

domain). Their results show significant success. Our project has distinct similarities 

with this paper in the knowledge discovery area. Our project utilises an ontological 

approach to adding new data to a knowledge to the knowledge base, e.g. words that 

are matched with our Rhetorical Devices ontology class of SuperfluousWord are 

deemed to have an unnecessary word (rhetorical device of Parelcon [40]) and are 

therefore tagged in the knowledge base as such and we can then derive the 

Parelcon rhetorical form based on this. Our approach is not fuzzy as in Abulaish at 

el’s work, but the principle is the same. 

In “Beyond String Matching and Cue Phrases: Improving Efficiency and Coverage in 

Discourse Analysis” [19], Corston-Oliver has a very similar objective to our project: to 

shed light on discourse analysis (strongly-linked to meaning representations) using 

RST relations. His approach is two-fold – to use Cue Phrases and syntactic analyses 

coupled with statistical analysis i.e. heuristic scoring. We have made much use of 

cue phrases in this project, but where our approach differs is that we are attempting 

to add world knowledge to the analysis rather than relying on cue phrases. This is no 

criticism of Corston-Oliver’s paper since it is now12-years-old and pre-dates the 

Semantic Web by a few years and certainly even now we could argue that there is 

not enough information in data form in the Semantic Web and Linked Data domain to 

add significant world knowledge to analyses let alone in this earlier time. The 

principle stands, however, that cue phrase matching is crucial to language analysis 

and both his and our projects have had some success in this field. 

David Reitter takes a different approach entirely in his paper from 2003 [51]. His pure 

statistical analyses (Vector Support Models) based on syntactic data attempt to 

discover RST relations. As he says “Linguistic accounts for rhetorical structure have 

the luxury to assume the availability of world knowledge and inference in rhetorical 

analysis. Automated systems resort, with quite some success, to a combination of 

little linguistic knowledge and a lot of shallow parsing”, it would be fair for us to say 

that our project has made use of plenty of shallow parsing and a little linguistic 

knowledge. Where we differ, however, is that we are attempting to solve the problem 

of automating the introduction of world knowledge. We have shown that, even in a 
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very rudimentary manner, we can import data dynamically and automatically from 

DBPedia and other Linked Data sources which can then provide world knowledge in 

order to add reasoning capabilities to our knowledge base.  

The ultimate aim of this analysis is to disambiguate natural language such that a 

computer can formulate a meaning representation of it. It is our belief that we have 

gone some way towards that aim. 

Overall in comparing our project with the related works it seems clear that the basis 

of language parsing and analysis coupled with rhetorical pattern discovery (in our 

case figures of speech mainly, but with some RST relations) is the same. Where this 

project differs is in attempting to address the issue of world knowledge inference. The 

related papers mention world knowledge, but often imply that the problem is too 

difficult to address. 

 

6.3 Contribution 

Since this project spans a number of domains the contribution it makes is (at least) 

two-fold. Firstly, in the field of linguistics the development of knowledge bases upon 

which to base language analyses is not new. Even the relatively new Semantic Web 

tools (e.g. OWL ontologies) have been used previously in his field. It is a powerful 

mechanism that enables effective investigation and persistency of results (via OWL 

ontology publication). We have taken the same view and utilised the GATE suite of 

algorithms and OWL ontologies. We feel that the outputs of the textual analysis are 

valuable because they add knowledge that was not previously available and in a 

format that is reusable and published online thereby enabling greater accessibility 

and expandability. Linguistic studies have even used logical reasoning previously. 

We take a similar approach, but have tried to stay within the Semantic Web domain 

by using SWRL. Our contribution then has been to analyse text and publish the 

resultant knowledge base online and as an input to the Semantic Web. It is possible 

for a resultant RDF file to be referenced in future studies in many ways including 

dynamic querying and expansion. We believe this to be something that has not been 

done often before in this domain. 

Secondly, the process of adding world knowledge to this kind of analysis is not 

completely new. The mechanism that we have shown to work is based on sound 

computing premise – the Semantic Web. This resource is blossoming and with an 
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appropriate framework in place can add knowledge to investigations of meaning that 

previously would not be possible to automate. 

 

6.3.1 Benefits 

The benefits of our work are that we have shown a mechanism to add world 

knowledge to linguistic analysis. We expect that this field will grow significantly as the 

Semantic Web grows. 

 

6.3.2 Drawbacks 

There are many drawbacks that we have discovered as we progressed through this 

project. Many of them are minor issues such as that a particular rhetorical pattern 

does not match our rule in all cases. For example our discovery of the rhetorical form 

of Historical Present searches online for data related to the individual person being 

references. Our knowledge base only searches for people with a single name, e.g. 

Aristotle or Socrates. Of course we could expand our processing to include more 

complex names, but it’s important to mention that in order to expand the forms of 

rhetorical discovered we sometimes were happy with a single rule that worked in a 

limited number of cases.  

There are many other small issues that could be addressed (such as the fact that 

WordNet is based on American English!), but we feel that the principle of information 

discovery suffices in our goal rather than completeness of the solution.  

We also must mention that while we believe GATE and Protégé to be excellent tools 

they work correctly only within certain tolerances. For example the statistical 

approaches to parsing employed by GATE plugins are not always 100% correct. This 

has an effect on the output and we have seen a number of words misclassified. This 

is rare, however, but does have an impact on the eventual output through our 

knowledge base since our processing relies on a correct analysis. 

 

 

 



59 

Cliff O’Reilly 

 

Chapter 7 – Conclusion / Future Work 

We have taken a number of free software tools and developed our own ontological 

approach to building a knowledge base. With the knowledge base we have 

developed a suite of logic rules that has enabled us to infer the existence of rhetorical 

forms within text. This has been done before (although not, to our knowledge, by 

using SWRL). Further to this we have shown that by adding world knowledge, input 

from the Semantic Web and Linked Data, we are able to expand our knowledge base 

and also our capability to “lasso” rhetoric and various rhetorical patterns. Perhaps 

more importantly for our purpose we have shown that the development of Meaning 

Representations within our knowledge base by virtue of the Description Logic and 

Horn Logic entities (within our OWL ontologies and SWRL rules respectively) is 

possible with Semantic Web technologies and that the dynamic addition of world 

knowledge can increase the potential for Meaning Representation-based inference 

and analysis. 

In our time computers cannot “understand” natural language. This is a significant 

problem that is being addressed in many ways. We argue in our project that the 

Semantic Web and Linked Data provide a mechanism to solve this problem. We 

believe that with the recent advances in computing technologies, specifically the 

Semantic Web that an old paradigm of knowledge base inference can be extended 

usefully to include world knowledge for the first time. We show that it is possible even 

if in a limited manner.  

The data sources available online are growing rapidly, but at the moment are not 

intended for augmenting Meaning Representations and linguistic analyses. Over time 

we expect that more data will become available that is more easily integrated into this 

kind of processing of language and that perhaps greater ontological frameworks will 

be developed that will allow highly complex knowledge bases, rules and inference to 

work in this important and expanding domain. 

 

7.1 Future Work 

Since this work belongs to a relatively new field we expect that there are many future 

works that will bring benefits. We summarise some of them below. 

1. Extension of search parameters: in this project we attempted to find rhetorical 

patterns. There is an equally important problem of discovering other language 
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forms, perhaps idioms or grammatical errors. This could be achieved in a 

similar way by using a knowledge base and logic rule system 

2. Inadequacies of SWRL: Our project has also highlighted the potential 

drawbacks of the SWRL language. Whilst we have been able to prove our 

thesis we find that SWRL is limited in its potential due to the facts that it is not 

computationally complete, doesn’t support negated atoms [79[ and also that it 

is not productive. We think that SWRL has a very useful position within the 

Semantic Web, however for our purposes we would prefer to use a different 

rule system – one that we haven’t seen yet. With the advent of the RIF 

framework we will expect to see more rule systems being developed for 

specific purposes. Our view is that a linguistic-based rule system that has the 

capabilities of SWRL, but also enables entity-creation and computational 

completeness, but crucially within the Semantic Web domain is required for 

future work in this area 

3. In the area of performance we think that our solution is adequate. As the 

principle of querying online resources is developed further, however, it will be 

necessary to investigate performance and the overhead of sending many 

HTTP requests over the internet. A solution might be to use offline storage 

mirrors of some large resources, e.g. DBPedia. 

4. Statistical linguistic analyses are mature and would prove beneficial to future 

work in this area by providing probability breakdowns for hard-to-decide 

algorithm outputs. For example trying to determine if a word is simply misspelt 

or is deliberately used in this way is very difficult. Humans find it easy to 

Code-Shift between dialects or languages, but a computing system cannot 

easily do this. A machine-learning approach would add significant benefits to 

this domain 
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Appendix 8 

Adjunctio (SWRL rule name: lassoAdjunction1) 

DocStruct:Doc(?x) ∧ gate:paragraph(?y) ∧ gate:Sentence(?z) ∧  

DocStruct:hasParagraph(?x, ?y) ∧ DocStruct:hasSentence(?y, ?z) ∧ gate:word(?a) 

∧  DocStruct:hasFirstWord(?z, ?a) ∧ langtag:Verb(?a) ∧ gate:hasStartNode(?z, ?b) 
∧  gate:hasEndNode(?z, ?c) → RhetDev:hasRhetoricalDevice(?x, RhetDev:Adjunctio) ∧  

gate:hasStartNode(RhetDev:Adjunctio, ?b) ∧ gate:hasEndNode(RhetDev:Adjunctio, ?c) 
 

Alliteration (SWRL rule name: lassoAlliteration1) 

DocStruct:Doc(?x) ∧  gate:paragraph(?y) ∧  DocStruct:hasParagraph(?x, ?y) ∧   
gate:Sentence(?z) ∧  DocStruct:hasSentence(?y, ?z) ∧  gate:word(?a) ∧   
gate:word(?b) ∧  gate:word(?c) ∧  DocStruct:hasWord(?z, ?a) ∧   
DocStruct:hasWord(?z, ?b) ∧  DocStruct:hasWord(?z, ?c) ∧   
DocStruct:hasNextWord(?a, ?b) ∧  DocStruct:hasNextWord(?b, ?c) ∧   
DocStruct:hasFirstCharacter(?a, ?d) ∧  DocStruct:hasFirstCharacter(?b, ?e) ∧   
DocStruct:hasFirstCharacter(?c, ?f) ∧  swrlb:equal(?d, ?e) ∧  swrlb:equal(?e, ?f) 
∧   gate:hasStartNode(?a, ?g) ∧  gate:hasEndNode(?c, ?h) →  
RhetDev:hasRhetoricalDevice(?x, RhetDev:Alliteration) ∧   
gate:hasStartNode(RhetDev:Alliteration, ?g) ∧   
gate:hasEndNode(RhetDev:Alliteration, ?h) 

 

Anaphora (SWRL rule name: lassoAnaphora1) 

DocStruct:Doc(?h) ∧  DocStruct:hasParagraph(?h, ?i) ∧   
DocStruct:hasSentence(?i, ?z) ∧  gate:word(?x) ∧  DocStruct:hasNextWord(?x, ?y) ∧   
gate:Sentence(?z) ∧  DocStruct:hasFirstWord(?z, ?x) ∧  gate:word(?a) ∧   
DocStruct:hasNextWord(?a, ?b) ∧  gate:Sentence(?c) ∧   
DocStruct:hasFirstWord(?c, ?a) ∧  DocStruct:hasNextSentence(?z, ?c) ∧   
gate:hasString(?x, ?d) ∧  gate:hasString(?y, ?e) ∧  gate:hasString(?a, ?f) ∧   
gate:hasString(?b, ?g) ∧  swrlb:equal(?d, ?f) ∧  swrlb:equal(?e, ?g) ∧   
gate:hasStartNode(?x, ?j) ∧  gate:hasEndNode(?b, ?k) →  
RhetDev:hasRhetoricalDevice(?h, RhetDev:Anaphora) ∧   
gate:hasStartNode(RhetDev:Anaphora, ?j) ∧  gate:hasEndNode(RhetDev:Anaphora, ?k) 

 

Antonomasia (SWRL rule name: lassoAntonomasia1) 

DocStruct:Doc(?x) ∧  gate:word(?y) ∧  DocStruct:hasNextWord(?y, ?z) ∧   
RhetDev:EpitheticalName(?y) ∧  RhetDev:EpitheticalName(?z) ∧   
gate:hasStartNode(?y, ?a) ∧  gate:hasEndNode(?z, ?b) →  
RhetDev:hasRhetoricalDevice(?x, RhetDev:Antonomasia) ∧   
gate:hasStartNode(RhetDev:Antonomasia, ?a) ∧   
gate:hasEndNode(RhetDev:Antonomasia, ?b) 
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Apocope (SWRL rule name: lassoApocope1) 

DocStruct:Doc(?b) ∧  gate:word(?x) ∧  RhetDev:FinalCut(?x) ∧   
gate:hasStartNode(?x, ?y) ∧  gate:hasEndNode(?x, ?z) →  
RhetDev:hasRhetoricalDevice(?b, RhetDev:Apocope) ∧   
gate:hasStartNode(RhetDev:Apocope, ?y) ∧  gate:hasEndNode(RhetDev:Apocope, ?z) 
 
 

Asyndeton (SWRL rule name: lassoAsyndeton1) 

DocStruct:Doc(?x) ∧  gate:word(?y) ∧  DocStruct:hasNextWord(?y, ?z) ∧   
DocStruct:hasNextWord(?z, ?a) ∧  langtag:HyphenatedAdjective(?y) ∧   
langtag:HyphenatedAdjective(?z) ∧  langtag:HyphenatedAdjective(?a) ∧   
gate:hasStartNode(?y, ?b) ∧  gate:hasEndNode(?a, ?c) →  
RhetDev:hasRhetoricalDevice(?x, RhetDev:Asyndeton) ∧   
gate:hasStartNode(RhetDev:Asyndeton, ?b) ∧   
gate:hasEndNode(RhetDev:Asyndeton, ?c) 

 

Catachresis (SWRL rule name: lassoCatachresis1) 

DocStruct:Doc(?x) ∧  gate:paragraph(?y) ∧  DocStruct:hasParagraph(?x, ?y) ∧   
gate:Sentence(?z) ∧  DocStruct:hasSentence(?y, ?z) ∧  gate:word(?a) ∧   
gate:word(?b) ∧  DocStruct:hasWord(?z, ?a) ∧  DocStruct:hasWord(?z, ?b) ∧   
VNC:UnusualVerbInCombo(?a) ∧  VNC:UnusualNounInCombo(?b) ∧   
DocStruct:hasNextWord(?a, ?b) ∧  gate:hasStartNode(?a, ?c) ∧   
gate:hasEndNode(?b, ?d) →  
RhetDev:hasRhetoricalDevice(?x, RhetDev:Catachresis) ∧   
gate:hasStartNode(RhetDev:Catachresis, ?c) ∧   
gate:hasEndNode(RhetDev:Catachresis, ?d) 

 

Dirimens Copulatio (SWRL rule name: lassoDirimensCopulatio1) 

DocStruct:Doc(?x) ∧  gate:Sentence(?y) ∧  DocStruct:hasWord(?y, ?z) ∧   
DocStruct:hasWord(?y, ?a) ∧  RhetDev:MinusComparison(?z) ∧   
RhetDev:PlusComparison(?a) ∧  gate:hasStartNode(?y, ?b) ∧   
gate:hasEndNode(?y, ?c) →  
RhetDev:hasRhetoricalDevice(?x, RhetDev:Dirimens_Copulatio) ∧   
gate:hasStartNode(RhetDev:Dirimens_Copulatio, ?b) ∧   
gate:hasEndNode(RhetDev:Dirimens_Copulatio, ?c) 
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Epistrophe (SWRL rule name: lassoEpistrophe1) 

DocStruct:Doc(?h) ∧  DocStruct:hasParagraph(?h, ?i) ∧   
DocStruct:hasSentence(?i, ?z) ∧  gate:word(?x) ∧   
DocStruct:hasPreviousWord(?x, ?y) ∧  gate:Sentence(?z) ∧   
DocStruct:hasLastWord(?z, ?x) ∧  gate:word(?a) ∧   
DocStruct:hasPreviousWord(?a, ?b) ∧  gate:Sentence(?c) ∧   
DocStruct:hasLastWord(?c, ?a) ∧  DocStruct:hasNextSentence(?z, ?c) ∧   
gate:hasString(?x, ?d) ∧  gate:hasString(?y, ?e) ∧  gate:hasString(?a, ?f) ∧   
gate:hasString(?b, ?g) ∧  swrlb:equal(?d, ?f) ∧  swrlb:equal(?e, ?g) ∧   
gate:hasStartNode(?y, ?j) ∧  gate:hasEndNode(?c, ?k) →  
RhetDev:hasRhetoricalDevice(?h, RhetDev:Epistrophe) ∧   
gate:hasStartNode(RhetDev:Epistrophe, ?j) ∧   
gate:hasEndNode(RhetDev:Epistrophe, ?k) 

 

Epizeuxis (SWRL rule name: lassoEpizeuxis) 

DocStruct:Doc(?d) ∧  DocStruct:hasNextWord(?x, ?y) ∧   
DocStruct:hasNextWord(?y, ?z) ∧  gate:hasString(?x, ?a) ∧  gate:hasString(?y, ?b) 
∧   gate:hasString(?z, ?c) ∧  swrlb:equal(?a, ?b) ∧  swrlb:equal(?a, ?c) ∧   
gate:hasStartNode(?x, ?e) ∧  gate:hasEndNode(?z, ?f) →  
RhetDev:hasRhetoricalDevice(?d, RhetDev:Epizeuxis) ∧   
gate:hasStartNode(RhetDev:Epizeuxis, ?e) ∧   
gate:hasEndNode(RhetDev:Epizeuxis, ?f) 

 

Historic Present (SWRL rule name: lassoHistoricPresent1) 

DocStruct:Doc(?x) ∧  gate:paragraph(?y) ∧  DocStruct:hasParagraph(?x, ?y) ∧   
gate:Sentence(?z) ∧  DocStruct:hasSentence(?y, ?z) ∧  gate:word(?a) ∧   
DocStruct:hasWord(?z, ?a) ∧  gate:word(?b) ∧  DocStruct:hasWord(?z, ?b) ∧   
DeadPerson(?a) ∧  langtag:ThirdPersonSingularPresentVerb(?b) ∧   
gate:hasDependency(?b, ?a) ∧  gate:hasStartNode(?a, ?c) ∧   
gate:hasEndNode(?a, ?d) →  
RhetDev:hasRhetoricalDevice(?x, RhetDev:Historic_Present) ∧   
gate:hasStartNode(RhetDev:Historic_Present, ?c) ∧   
gate:hasEndNode(RhetDev:Historic_Present, ?d) 

 

Historic Present (SWRL rule name: lassoHistoricPresent2) 

DocStruct:Doc(?x) ∧  gate:paragraph(?y) ∧  DocStruct:hasParagraph(?x, ?y) ∧   
gate:Sentence(?z) ∧  DocStruct:hasSentence(?y, ?z) ∧  gate:word(?a) ∧   
DocStruct:hasWord(?z, ?a) ∧  gate:word(?b) ∧  DocStruct:hasWord(?z, ?b) ∧   
DeadPerson(?a) ∧  langtag:NonThirdPersonSingularPresentVerb(?b) ∧   
gate:hasDependency(?b, ?a) ∧  gate:hasStartNode(?a, ?c) ∧   
gate:hasEndNode(?a, ?d) →  
RhetDev:hasRhetoricalDevice(?x, RhetDev:Historic_Present) ∧   
gate:hasStartNode(RhetDev:Historic_Present, ?c) ∧   
gate:hasEndNode(RhetDev:Historic_Present, ?d) 
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Parelcon (SWRL rule name: lassoParelcon1) 

DocStruct:Doc(?x) ∧  gate:word(?y) ∧  DocStruct:hasNextWord(?y, ?z) ∧   
RhetDev:SuperfluousWord(?y) ∧  RhetDev:SuperfluousWord(?z) ∧   
gate:hasStartNode(?y, ?a) ∧  gate:hasEndNode(?z, ?b) →  
RhetDev:hasRhetoricalDevice(?x, RhetDev:Parelcon) ∧   
gate:hasStartNode(RhetDev:Parelcon, ?a) ∧  gate:hasEndNode(RhetDev:Parelcon, ?b) 

 

Syncope (SWRL rule name: lassoSyncope1) 

DocStruct:Doc(?b) ∧  gate:word(?x) ∧  RhetDev:MedialCut(?x) ∧   
gate:hasStartNode(?x, ?y) ∧  gate:hasEndNode(?x, ?z) →  
RhetDev:hasRhetoricalDevice(?b, RhetDev:Syncope) ∧   
gate:hasStartNode(RhetDev:Syncope, ?y) ∧  gate:hasEndNode(RhetDev:Syncope, ?z) 
 

RST Circumstance (SWRL rule name: lassoRST_Circumstance) 

DocStruct:Doc(?x) ∧  gate:paragraph(?y) ∧  DocStruct:hasParagraph(?x, ?y) ∧   
gate:Sentence(?z) ∧  DocStruct:hasSentence(?y, ?z) ∧  gate:word(?a) ∧   
DocStruct:hasWord(?z, ?a) ∧  gate:word(?b) ∧  DocStruct:hasWord(?z, ?b) ∧   
gate:hasDependency(?a, ?b) ∧  langtag:Noun(?b) ∧  gate:hasStartNode(?a, ?c) ∧   
gate:hasEndNode(?a, ?d) →  
RhetStruct:hasRhetoricalStruct(?x, RhetStruct:Circumstance) ∧   
gate:hasStartNode(RhetStruct:Circumstance, ?c) ∧   
gate:hasEndNode(RhetStruct:Circumstance, ?d) 

 

RST Temporal-After (SWRL rule name: lassoRST_TemporalAfter) 

DocStruct:Doc(?x) ∧  gate:paragraph(?y) ∧  DocStruct:hasParagraph(?x, ?y) ∧   
gate:Sentence(?z) ∧  DocStruct:hasSentence(?y, ?z) ∧  gate:word(?a) ∧   
DocStruct:hasWord(?z, ?a) ∧  gate:word(?b) ∧  DocStruct:hasWord(?z, ?b) ∧   
gate:hasDependency(?a, ?b) ∧  langtag:Verb(?b) ∧  gate:hasStartNode(?a, ?c) ∧   
gate:hasEndNode(?a, ?d) →  
RhetStruct:hasRhetoricalStruct(?x, RhetStruct:TemporalAfter) ∧   
gate:hasStartNode(RhetStruct:TemporalAfter, ?c) ∧   
gate:hasEndNode(RhetStruct:TemporalAfter, ?d) 
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Appendix 9 

Rhetorical form Test text string 

Adjunctio Lassoing rhetoric with OWL and SWRL. 

Alliteration Perhaps Penelope picked plums today? 

Anaphora 

 

We shall fight in France, we shall fight on the seas and oceans, we shall 

fight with growing confidence and growing strength in the air, we shall 

defend our island, whatever the cost may be. We shall fight on the beaches, 

we shall fight on the landing grounds, we shall fight in the fields and in the 

streets, we shall fight in the hills; we shall never surrender. 

Antonomasia Will the Iron Lady meet the Iron Duke for tea with Il Duce? 

Apocope Will it occur oft or not at all? 

Asyndeton The result was an unhappy, miserable, unfair, unfixed, great mix 

Catachresis Lassoing rhetoric with OWL and SWRL. 

Dirimens Copulatio Not only was this project undertaken in the UK, but also during the summer 

of 2010. 

Epistrophe When I was a child, I spake as a child. I understood as child; I thought as a 

child. 

Epizeuxis It's all football, football, football with you! 

Historic Present When Aristotle says he thinks that correlatives are commonly held to come 

into existence together he means for the most part. 

Parelcon For why should he not think that? 

Syncope Dunno we think. 

RST Circumstance After its previous mayor committed suicide last year, an investigation 

disclosed that town officials regularly voted on their own projects. 

RST Temporal-After The dollar finished lower yesterday after tracking another rollercoaster 

session on Wall Street. 

 


