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ABSTRACT

In this thesis we propose a novel metric of document intent evaluation based on

the detection and classification of rhetorical figure. In doing so we dispel the notion

that rhetoric lacks the structure and consistency necessary to be relevant to compu-

tational linguistics. We show how the combination of document attributes available

through shallow parsing and rules extracted from the definitions of rhetorical figures

produce a metric which can be used to reliably classify the intent of texts. This

metric works equally well on entire documents as on portions of a document.
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Chapter 1

Introduction

1.1 Statement of Intent

In this thesis we propose a novel method of metering natural language text based on

its rhetorical attributes. Unlike previous approaches which focus on deep analysis

of the text, our method is capable of generating significant and consistent evalua-

tions based on shallow attributes of the text. We achieve this by using information

gathered from rhetorical figures to understand how the shallow attributes of text

can be combined to form “emergent” complex attributes – attributes whose complex

structure is composed of shallow attributes combined in a specific pattern – upon

which our metrics are based. In this process we recognise the study of rhetoric and

rhetorical figures as a field which is rich in data but whose seeming lack of structure

has detracted scholars in natural language processing from mining its knowledge. In

this thesis we dispel this notion, showing how a meticulous examination and care-

1



ful interpretation of rhetorical figures can yield information about documents that

is useful not only to computational linguistics but also to any field working with

natural language text such as document classification and information retrieval. We

furthermore generate specific values of saliency based on detection and classification

of rhetorical figures in documents which can be applied towards a metric that in

turn can be used to effectively and efficiently evaluate author intent at both the

macro- and micro-document level. This flexibility of application distinguishes our

method from other similar metrics based on shallow attributes which do not apply

to micro-document level evaluation.

1.2 Chapter Summaries

We begin in Chapter 2 by reviewing the current state of natural language processing,

natural language generation, and document evaluation. We use this review to show

that there is an open field in document evaluation, how our research fits that field,

and what additional knowledge from the field of rhetoric benefits our research. Most

importantly we determine what it is that we want to measure with our proposed

metric. We then proceed in Chapter 3 to structure the depth of our research. We

choose epanaphora - the repetition of words at the beginning of sentences, phrases,

or lines of text - as the rhetorical figure focus for our study. As a figure of syntax

(schemes), epanaphora is an ideal candidate for this research. Because it is based on

repetition it can be reliably detected without using deep analysis of text. We dis-

tinguish between intentional and accidental epanaphora, how they differentiate, and
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how this distinction is relevant to our metric for natural language evaluation. We de-

termine what shallow attributes we use for epanaphora detection, how we use these

attributes, and we demonstrate that the use of these shallow attributes returns a

comprehensive list of candidates for epanaphora. Chapter 4 discusses the refinement

of the rhetorical figure detection process. We propose additional shallow attributes

which we use to distinguish between intentional and accidental epanaphora. Since

the attributes in Chapter 3 are used to perform comprehensive epanaphora detec-

tion, we apply these new shallow solely towards recording the new features of existing

epanaphora, which are then used for classification between intentional and accidental

epanaphora. We conclude this chapter by redesigning the detection- and attribute

recording algorithms to efficiently accommodate the new shallow attributes deter-

mined in this chapter. We then proceed to Chapter 5, which discusses the main study

of this thesis: the automatic classification of rhetorical figures. We proceed through

the tasks of using expert annotators to create an annotated corpus of rhetorical fig-

ures to train automatic classifiers, followed by the initial training and evaluation of

different models of automatic classification. After that we perform a refinement of

the classification process through the application of a third generation of shallow

attributes as constraints. Lastly we apply the gained knowledge to a new corpus and

evaluate the results.
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Chapter 2

Background

2.1 Area of Research

As a field under the large umbrella of artificial intelligence, computational linguistics

(also known as natural language processing) is the broad area of research whose

focus is to understand and generate the interaction between computers and human

(natural) languages [77]. These constructs are most commonly in the form of text,

but research on the understanding of spoken language also exists.

Natural Language Generation (NLG) is a sub-area of Natural Language Process-

ing (NLP), and focuses on producing human-readable text from information sourced

from computer-understandable representations. It is a subtopic to the fields of Ar-

tificial Intelligence (AI) and a sub-field of computational linguistics. NLG has a

close link to Natural Language Understanding (NLU), in that they are effectively

complementary methods. Whereas NLU focuses on interpreting human language –
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which is often ambiguous and potentially malformed – into unambiguous computer

representations, NLG’s efforts are put into taking the computer representations and

producing human-readable output that meets particular reader criteria. The pri-

mary driving goal behind NLG is best described by Reiter and Dale [121], who write:

”Natural language generation is best characterised as a process of CHOICE: Given

the different means that are available to achieve some desired end, which should be

used?”

In this chapter we examine the diverse fields of natural language processing and

follow the process of discovery used to anchor the research of this thesis. We begin

with an overview of NLP and the diverse ecosystem of metrics and classification

algorithms. During this overview we draw up the skeleton of our thesis and identify

the possible strengths of our approach.

2.1.1 Brief History of Natural Language Generation

Early work in natural language generation started in the 1950s and 1960s and fo-

cused on machine translation and generation grammars for generating well-formed

sentences. However, work on actual generation of natural language content (as op-

posed to mapping from predetermined content) did not begin until the mid-1970s,

with work by Goldman and Davey [66] [98]. The most important contribution of

these early efforts is the establishment of a distinction between natural language

understanding and natural language generation. During the early 1980s the efforts

by McKeown and Appelt [99] [3] helped shape the direction of natural language gen-

eration for years to come. The most important trend developed in by this decade
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was the advent of specialised systems that focused on one particular task of natural

language generation, as opposed to the monolithic systems that had been prevalent

until then. The 1990s saw a large number of new practical applications of NLG tech-

nology [121], many owing their success to new technologies that had previously made

their deployment impossible or impractical. In the field of natural language under-

standing, more powerful computer systems made it possible to introduce statistical

analysis of text as a viable option. Since the late 1990s there has been a rapid growth

of work on multi-agent and distributed systems. These efforts are starting to be in-

corporated into natural language generation through works such as that of Hervas

and Gervas [71] and ongoing work based on ideas first proposed for the HealthDoc

Sentence Planner [146].

2.1.2 Natural Language Generation Systems

Classic Model

Early natural language generation systems had two stages: Document planning, dur-

ing which the content and overall layout of the text is generated, and surface realiza-

tion, which took the document plan and performed the final tasks of the generation

process, such as syntax and morphology among others [121]. However, a number

of tasks such as aggregation [43][71], coreference [3][42], and lexical choice involve

knowledge that is relevant both to document planning and surface realization. Thus

a third step was conceived – Microplanning, also known as sentence planning. The

introduction of this step has helped streamline the natural language generation pro-

cess by allowing the document planner to focus solely on the coarse-grained aspects
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of generation, and taking the decision-making steps out of the surface realization

task.

Aggregation (also called ellipsis or coordination in linguistics [43]) and coreference

share a large number of characteristics in that they both perform the task of reducing

text monotony by eliminating repetition. They differ in what kind of repetition is

eliminated, and how this is achieved. A key element in these steps is that even

though repetition is eliminated, the aggregated/coreferenced text does not lose any

explicit information.

Lexicalization is the part of microplanning that reaches the furthest into both

document planning and surface realization. The task of lexicalization is to take the

document plan’s skeleton (or template) and introduce the appropriate terms (words)

which are then taken by the surface realizer and converted into the final sentences.

The work of near-synonymy falls close to lexicalization in that it involves the

selection of appropriate words. However, unlike lexicalization, near-synonymy is less

involved with the document plan, because its main goal is to eliminate single-term

repetition by introducing synonyms and near-synonyms.

Agent-Based Systems

Monolithic systems in computer science are becoming less common with the advent

of accessible distributed computing resources. While monolithic models provide the

best solution for systems that reside on one machine, they are limited to the resources

of that machine. Distributed systems show better overall performance due to their

scalability, as long as the task given does not depend on low-latency communication.
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As a result, one can think of agent-modelled applications to be the embodiment of

high-latency distributed systems. It is expected of agent-based systems to separate

the given tasks as much as possible, thus minimising the amount of information that

needs to be communicated between agents.

In programmable agent-based systems [35], the task of assigning work to different

agents falls upon the facilitator . This facilitator can be seen as being the gateway

agent through which requests are submitted. The facilitator will then decide which

agents can perform the requested tasks and which of those agents are available. If

the requested query needs to be performed by multiple agents, the facilitator also

handles the coordination of those agents. This agent-facilitator model is more flexible

than parallel-programming systems, because it does not rely on 100% uptime of each

agent. It is possible to dynamically add or remove agents as well, thus easily changing

the way the system handles queries.

An example of an agent-based text generation system is showcased by Pereira,

Hervás and Gervás [112], with different agents handling the lexical database, lookup

of concepts related to a lexeme, structure alignment, and query generation.

In our thesis we adopt a hybrid model combining centralised NLP and ideas

from agent-based systems. In particular we strive to make our system modular by

maintaining low coupling between each of the ’agents’, i.e. the stages of the software.

We also maintain high cohesion within those stages. Through this approach we

eliminate the need of a low-latency network between each ’agent’ but still allow

them to act independently from each other.
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Content Adjustment

So far, our discussion of computational linguistics has focused on generation of new

documents. However, a significant portion of the research in natural language gen-

eration can be placed under the umbrella of text-to-text transformation. Among the

more noteworthy fields of research in this area are translation, summarisation, and

generation by selection and repair [49].

The goal of machine translation is to interpret text in one language and reproduce

it, usually in another language. This process involves both natural language under-

standing and natural language generation, and as such has to deal with difficulties

from both fields. In its simplest form, machine translation is done on a word-by-word

basis. This process is known as token substitution. This simple approach has been

shown to produce relatively good results when the source and target language have

similar syntactic and grammatical constructs. However issues can still arise with

compound words and words which are a single lexical entity in one language but not

the other. Brown et. al. [23] give the English-French translation to go→aller as an

example of such issues: “While our model allows many target words to come from

the same source word, it does not allow several source words to work together to

produce a single target word”.

The task of extracting content from an information source and displaying it in a

condensed form is called summarisation. The types of summaries vary based on the

user (generic or personalised) and the content of the summary (extract vs. abstract)

[94]. Automatic summarisation plays an increasingly important role in today’s so-

ciety. The ever-increasing volume of online documents translates into an inability
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by users to keep up with information they need to know and/or be aware of. Sum-

marisation of online documents differs from traditional goals of summarisation in

that much of the information available online is duplicate among several sources.

Generation of summaries that is consistent with all sources for which the content

overlaps is important for services such as news aggregators and search engines [131].

Mobile computing introduced yet another paradigm shift in summarisation due to

the limited physical resources of mobile devices and the consideration that services

are no longer dealing with stationary users, meaning that the information relevant

to an access terminal changes with its location.

Translation and summarisation systems generally process their input only once.

However, with personalised online services such as online portals and content man-

agement systems becoming the norm, there is an increased demand for systems of

source reuse. Key to source reuse is the idea that it is possible to edit individual

portions of the text once. These sections are internally consistent, thus removing the

need for the generation system to verify their correctness and instead allowing it to

focus on assembling them into the final, full document. There is a limit, however,

to how much editing can be removed from post-assembly. The difficulty of pre-

editing increases significantly with each additional customisation option, specially

when a comprehensive set of variations is required. Ensuring that every change in

the source remains consistent with each combination becomes a NP-hard problem.

An alternative was proposed by Wanner and Hovy [146]: Pre-editing is limited to

assuring internal consistency for each individual source segment inside the ‘Master

Document’. After assembly, a second editing step ‘repairs’ transitions between seg-
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ments to guarantee coherence. This approach of separating content generation from

content correction significantly lightens the burden of content generation, and has

been used in commercial applications of text reuse involving automated generation

of tailored web-page and print-based health education materials [49].

Even though effective techniques for summarisation have been established al-

ready, the choice of using one of these techniques over another is still driven by

human selection. The reason for the need of human input is the lack of a standard-

ised metric for evaluating the effectiveness of each summarisation technique against

different human demographics. We find that this is a common problem in natural

language processing applications. The root of this problem is the inherent subjec-

tivity of evaluation from the perspective of a human demographic.

2.1.3 Statement of Problems

All of the systems described in Section 2.1.2 share the common trait of having output

that is constructed from pieces of input text that already are internally coherent,

and in many cases pre-fabricated. As a result, many evaluation methods for natural

language generation do not apply to them. Text-to-text transformation systems that

put a focus on recycling input material do not generally affect the traits of generated

text that classic methods of evaluation examine.

We propose that it is possible to devise a metric for evaluating the effectiveness of

natural language generation frameworks by how well they preserve the local coher-

ence of the input. This method is superior to classic systems of measurement which

focus on generating a single metric for an entire document. Instead of treating the
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entire document as an immutable and homogeneous input our approach is sensitive

to internal variations and changes between the inputs and outputs of text generation

systems. However, unlike token-based models for shallow localised metrics such as

Markov chains, we maintaining a sufficiently coarse granularity: By using entities

that are larger than simple words we prevent out system from being overly sensitive

to minor lexical changes.

We further propose that the same metric used for evaluation can also be used

in document classification. A measurement that is a composite of various document

attributes would be capable of exposing intra- and inter-document relations which

are not evident otherwise.

2.2 Related Fields of Document Evaluation

In Section 2.1.3 we described one of the open problems in natural language processing

as the need to produce a metric for the evaluation of NLP systems as well as for

document classification. In particular this metric should produce more than a single

value per document while still being generic enough to be resilient to fluctuations at

the shallow text level. We proposed local coherence as one of the possible ways in

which this metric could be quantified.

In this Section we will examine the existing systems of metrics in computational

linguistics, how their achievements converge towards or diverge away from our do-

main, and how these systems of metrics can contribute to this thesis.
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2.2.1 Readability Indices

Readability is the quality of a text that makes it more compelling and easier to com-

prehend than others. It is not the same as legibility. The latter focuses on typeface,

calligraphy, and layout, among others, and is generally studied under the subject of

typography [20] [31] [142] [108]. Readability is purely dependent on writing style,

and has been attributed to clarity [69]. Readability affects rate of understanding,

reading speed, and reader interest [41].

Readability Guides and Formulas

There are numerous guidelines for English composers to make their text more read-

able. For example, standard rules for documentation writing include, among others,

the use of short, simple words, avoiding domain-specific terms, being culture-and-

gender-neutral, and avoiding complex sentences [134]. The aim of these guides is to

improve the readability of text. Their success is usually measured in the form of an

index based on word complexity and sentence length. Numerous formulas have been

developed since the 1920s that attempt to predict the difficulty level of texts, with

wide success in areas such as journalism, law, health care, and military documenta-

tion [51]. Despite their success and popularity (or perhaps because of it), there have

been many critics of readability formulas. Much of this criticism lies in the perceived

shortcomings of these formulas, namely that they ignore components such as cohe-

sion, number of items to remember, rhetorical structure, etc. [11]. What these critics

fail to realize is that while not perfect, readability indices provide a simple yet sur-

prisingly accurate and objective method of predicting the reading level required by a
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human to comprehend a text. Most importantly, they do not require a perfect parse

to achieve satisfactory accuracy, unlike more complex methods of quantifying read-

ability. Some of the most popular indices of readability are the Flesch-Kincaid Grade

Level formula [59], the Gunning Fog test [52] [68], and the Coleman-Liau index. The

scores of the Flesch-Kincaid test and the Coleman-Liau index give the grade level

required for a reader to understand a test. The Gunning Fog test calculates the

number of years of formal education needed to understand a text.

The greatest contribution of readability formulas to this thesis are their extensive

research on syntax-independent characteristics of documents. They show that it is

possible to generate meaningful and useful metrics without deep analysis of docu-

ments and provide a solid background on the types of patterns that can be of interest

to algorithms following a similar approach.

Limitations in Application

Unfortunately, readability indices are not very useful beyond their intended purpose.

Firstly, there is a dissonance between the goal of readability indices (to help authors

maintain their documents at a certain required reading level for the user) and the

necessity of authors to maintain a particular sentence structure. In particular, the

consensus among the proponents for the use of readability indices appears to be that

a lower required reading level is better for any document. We contend, however, that

it is just as important to maintain a minimum level of reading difficulty to maintain

reader interest. Structuring a document to retain reader interest is usually achieved

in natural language generation during the microplanning phase. The process of
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microplanning includes techniques like aggregation, referring expression generation,

and coreference resolution [43] [66] [71] [98] [99] [3], most of which generally increase

the complexity of the generated text according to readability indices. Readability

indices indicate that text is more comprehensible if the word per sentence ratio (or

syllables per sentence, or words per paragraph, depending on the particular metric

used) is lowered, and that a too-high ratio will deter less skilled readers. Aggregation,

on the other hand, is based on the principle that small successive sentences can be

fused in order to reduce tedium due to repetition.

The second problem with readability indices is that they generate metrics at the

macro-document level, whereas we desire a more fine-grained set of results at the

intra-document level, that is, between the entities which constitute each document.

For example, a change in the syntactic structure of a sentence has the potential to

destroy some of the meta-information encoded in it, while not significantly altering

the readability scores of the text. We wish for our system to be aware of syntax-level

changes.

Lastly, while the use of readability indices in obtaining objective information

about a natural text is undisputed, their feature-agnostic nature itself means that

they are unfit for measuring less general attributes like affect, attitude, and semantic

similarity.

2.2.2 Stylometrics

In Section 2.2.1 it was discussed why the statistical analysis of token counts in text

(where a token can be a letter, syllable, word, or other unit that is not subject to
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interpretation and can be counted) is not useful as a method of quantifying change in

natural text, nor is it capable of providing any semantic information at the phrase or

sentence level. In particular, we need to find a way of analysing elements of the text

that alter or enhance the meta-information provided by said text. In the context of

text element analysis, meta-information refers to anything that can not be inferred

through direct extraction of the explicit meaning of tokens, as done for example

during a dictionary look-up. We are particularly interested in the stylistic features

of natural text, since alteration of style is one of the key functions of document

tailoring and, by association, narrative tailoring.

Whereas readability indices focus on counting the elements of a text that alter

the grade level required to read a text, the practice of stylometrics is more interested

in generating statistics based on “unit(s) of counting which (translate) accurately

the ‘style’ of the text” [74]. Style can thus be defined as the set of elements that can

be used to identify the writings of an author. It is for these reasons that stylometrics

is also known (and more commonly practised) as authorship attribution.

Style Markers

There are two parts to authorship attribution. The first task is to extract the style

markers that may be used to identify an author. In this endeavour, it is a common

misconception of the uninitiated that it is sufficient to look at the rare or technical

words (also known as peripheral or marginal words) used in a document. However,

other markers such as context-free ‘filler’ (function) words [4] [27] [75] [82] [150]

and punctuation symbols [4]. Part-of-speech tags have also been used in authorship
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attribution [5] [88] [130] [132] [133] [151], indicating that the same elements used in

readability indices. There are similarities between the methods used on the above

markers and readability indices, particularly with function-word markers. However,

the major difference consists in readability indices being agnostic to the type of word

used in their statistics.

Comparison Mechanisms

The second task to effective authorship attribution is the selection of a proper com-

parison mechanism. Particularly measurable features of the markers are word clus-

tering, entropy, and the group of words encountered only once in a document, hapax

legomena [14]. This latter category of text markers is interesting in that it may

be used in studying the richness and expansion of an author’s vocabulary over the

course of their works. When it comes to methods used for analysing these features,

statistical analysis comes out as a popular one, involving techniques such as linear

discriminant analysis [4] [130] [133] and component analysis [5] [27] [75]. Another

method is to approach the problem of authorship attribution as a document classi-

fication issue, in which case machine learning (Bayesian Networks, Support Vector

Machines (SVMs)) is used [48] [87].

Relevance

There exist limitations to how authorship attribution can be applied to study se-

mantic properties of natural language text. First, there are the constraints necessary

for authorship attribution to be effective. These are the need for a limited and
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well-defined set of putative authors, a lower bound on the length of the text to be

analysed, and the comparison texts should be corresponding in size or degree to

the disputed document [6]. The second and third constraints are a disheartening

quality in that they put hard boundaries on the flexibility of the authorship attribu-

tion methods. The metric system in this thesis is intended to be a general-purpose

method of examination. By having to exclude documents below a certain length we

would be discarding a significant portion of the applications for this metric. Evalua-

tion of summarisation would definitively be out of the question, as the entire purpose

of that practice is to produce a significantly shorter document. It is also doubtful,

in the context of examination of text-to-text transformation systems, that there will

be a significant divergence between the count of quantitative markers used in stylo-

metrics between pre- and post-transformation documents. Generation by selection

and repair [49] in particular would have the least variation, since most (if not all)

of the repair is done at the grammatical level, and then only centered around the

transitions between selected snippets of text. Lastly, not being able to perform anal-

ysis at intra-document level as defined in Section 2.2.1 means that atomic changes

like those we expect to see in generation by selection and repair can not be easily

identified due to the global nature of the measurement.

Despite the above reasons, the work in this thesis can still benefit from the study

of authorship attribution. The largest contribution stylometrics is the multitude of

options available for counting markers, in particular when it comes to identifying

unique elements of style. As with the attributes of documents used in readability

indices, these style markers are commonly independent of the syntactic structure of
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documents.

2.2.3 Local Coherence

Natural language generation systems need to not only ensure that their output is

syntactically and grammatically correct, but also coherent. The study on coherence

differentiates between local coherence and global coherence. The latter depends on

the intentional structure of the document, that is, the structure that emerges from

the document planning element of classic natural language generation. Local coher-

ence, in contrast, is related to the coherence among utterances within each discourse

segment of a document, e.g. sentence-to-sentence transitions and the perceived con-

tinuity between their constituents [67]. This perceived continuity is the aspect which

is most affected by the types of generation frameworks in which we are most inter-

ested. In particular, once can consider the repair aspect of generation by selection

and repair as being focused on restoring local coherence when there is a shear caused

by selected adjacent segments of text being generated independently of each other.

Similarly, summarisation preserves the general coherence of the document by keeping

skeleton structure of the input, but local coherence suffers on account of sentences

or segments of sentences being removed.

Local coherence, has been the focus of extensive studies in computational linguis-

tics [67] [96] [10] [9] as well as psycholinguistics [100]. The approach to local coher-

ence in which we are most interested is the entity-based model, which is supported

by centering theory [139] and alternative approaches [135]. Entity-based study of

local coherence examines the transitions between the given entities (usually words,
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phrases, or sentences) as sequences. These sequences are used to expose the quality

of coherence of a generated document, and have been demonstrated to be useful in

evaluating the coherence of summaries and assessing the readability of documents

[9].

Salience

Salience, in regard to the study of local coherence, is the discriminating factor used

to determine the degree of coherence among entities. The basic idea is that there is

a very strong relation between salience and the degree in which referring expressions

and pronominalisation occur [145]. These relations have been further extended to

include topicality, predictability, and cognitive accessibility, and quantification has

been adjusted from a binary representation to a hierarchical representation [9]. Com-

mon among all representations is that the way salience is viewed is by how entities

are introduced and discussed.

The theory linking salience and coherence is simple: Coherence is seen as a strong

continuity between discourse entities, as opposed to sudden and frequent switches be-

tween topics. More salient features are strong indicators of coherence, since salience

is seen as a feature of topic continuity. By formalising the transitions between salient

features it is thus possible to quantify the local coherence of a document.

Relevance

The study of local coherence is the area of research that most closely resembles the

features of measurement that are of interest to us in this thesis. The most important
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contribution is the consideration of local transitions between discourse entities, the

entity granularity itself. There are a number of points, however, where we believe

that an improvement is possible. First is the selection of the type of discourse entity.

Local coherence and centering work with syntactic entities at large. We believe that

it is important to attempt to separate syntactic constructs from our metric, so an

alternative choice of entity is necessary. Our key criteria are the aforementioned

disassociation from syntactical and grammatical resources, and the preservation of

granularity similar to the one used in local coherence studies. Anything larger would

not be able to efficiently discern transitions between discourse entities, while anything

smaller would regress into dependence on syntax.

Given that we will be relying on different entities as markers for our metric, we

believe it is prudent to examine alternative definitions of salience. Research on local

coherence has, as to date, relied on counting methods that closely resemble those used

in readability indexes. We intend to introduce additional forms of quantification,

largely from the field of stylometrics.

The last point in which our line of research diverges from current work in local

coherence is the application of the metric, and as a result the method by which

documents are compared. Whereas formal studies in local coherence are focused on

determining whether an output contains an acceptable level of coherence, we are

more interested in applying the knowledge gained from the metric to guide the text

generation process itself. This tiered and interdisciplinary use of local coherence is

an area that remains largely unexplored, but which can significantly contribute to

the field of computational linguistics.

21



2.3 Rhetorical Figures as Discourse Entities

In Section 2.1 we focused our attention on the different techniques which may be

used to identify the unique attributes of a document that can be used to formulate

a metric for subjective evaluation of natural language processing systems. In this

section we will shift our focus towards the application of these unique attributes.

We identify what we will be measuring, how we intend to measure it, and how these

measurements can be interpreted as a metric.

2.3.1 Theory of Rhetorical Figures

In order to find entities of discourse that match the criteria set in Section 2.2.3 we

shall turn to the study of rhetorical figures. In this section we will examine the

properties of rhetorical figures, and explain the qualities that lead us to selecting

them as markers for our metric.

Classification

There are numerous ways of grouping rhetorical figures. For the purposes of this

thesis we will consider three sorting categories: By method of deviation, by appeal

(the area in which they apply their persuasion), and by their function.

Deviation: Schemes, Tropes, and Colour

The idea of figures of speech as deviations from the ‘norm’ is not a new one. As

early as Quintilian [120] [119] figures of speech have been considered to be diverging,
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be it accidental or on purpose, from the ‘natural or proper’ patterns of speech [50]:

They are thought of as “a rational change in meaning or language from the ordinary

and simple form” [29], as “a forme of words, oration, or sentence, made new by art,

differing from the vulgar maner and custome of writing or speaking” [111]. This

way of thinking however is limited, as figures are an intrinsic element of language.

From Aristotle in ancient Greece to the 18th Century [50] that same rejection of

the notion that rhetorical figures are deviations has been repeated in some form or

another: “There is nothing so natural, so ordinary, and so common as figures in

human language.” Fontanier [60] proposes an alternate definition of figures. The

deviation from a ‘simple’ form can be thought of as the form in which a phrase can

be substituted with a more ‘straightforward’ one, even though the deviate may be

statistically more common. In particular, we can draw an analogy between ‘deviates

from simple’ and ‘has low semantic relatedness’.

Despite deviation being an overloaded term in the sense that we find it difficult to

define the norm, we can still use it for categorisation, not by the degree of deviation,

but by the form in which the figures manifest themselves.

Figures of Context: Colours

Colours are the least commonly discussed type of figure. Their characteristics, like

their discussion, are nebulous at best. The term itself can be misleading. Colours

have nothing to do with the chromatic attributes of a text; Instead, their occurrence

is centered around their effect on the context of phrases, or “(the relations) between

a sign and the elements which surround it within a concrete signifying instance”
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[129]. In computational terms, this attribute of colours makes them very hard to

automatically detect in text, since there are no rules or syntactic markers that can

be exploited for the purpose of identification.

Figures of Syntax: Schemes

Sally sells seashells by the sea shore.

Figure 2.1: Alliteration, a scheme which involves the repetition of the same letter or
sound within nearby words.

Schemes are a particularly easy form of figure to detect. In the context of semiotic

analysis [32] [33], schemes work along the syntagmatic axis of the semiotic plane

[47] [46]. They are naturally rooted in the syntax of natural text, and are as a

result qualities that arise from the arrangement of tokens and the selection of lexical

alternatives. In other words, they are patterns, and computers are very good at

handling that kind of information. In particular, schemes partially overlap with

the field of natural language generation: Aggregation, coreference resolution, and

referring expression generation, among others, all deal with the need to alter or

improve the syntactic structure of text without changing the meaning [43] [66] [71]

[98] [99] [3].

Figures of Meaning: Tropes

He was excited like a weasel in a candy shop.

Figure 2.2: Simile, a trope involving explicit comparison.
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Whereas colours are of an ethereal nature and schemes are deeply rooted in

syntax, the last category of divergence, tropes, takes the middle ground. Tropes deal

with a change in meaning, and are to be considered as a semantic function of natural

language text. In semiotic theory they take the paradigmatic (associative) axis of

text analysis. The main function of tropes is to substitute, to separate the literal

an interpreted meaning of figures. Most theories of rhetoric that consider figures of

speech as deviation from the ‘norm’ have tropes in mind. Indeed, the most common

types of tropes, the four ‘master’ categories [25] [26], are the ones most commonly

associated with the notion of figure of speech: metaphor, metonymy, synecdoche,

and irony.

Tropes are agents of paradigmatic change. In order to be able to fully exploit

their variety we require a method of analysing their semantic content. In Section

2.3.2 we will examine how to take advantage of existent research in semantic analysis

to effectively detect and classify tropes.

Appeal: Logos, Pathos, Ethos

Appeal is, in and on itself, not a true classification of figures. However, we deem

appeal to be just as important to the success of this research. In rhetoric, persuasion

is divided into three categories, depending on the target of the oratory: Logos, the

appeal to reason, pathos, the appeal to emotion, and ethos, the appeal to character

[124] [85].

In persuasion, logos is the is the category on which the argument is built. In fact,

argumentation theory is almost exclusively focused on the appeal to logos [140] [141]
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[8].

Will someone think of the children?!

Figure 2.3: An appeal to pathos

Cicero promoted the idea of pathos being used at the conclusion of the argument

[36]. While Aristotle preferred that arguments be based as much as possible on

logos, he did pay considerable attention to the appeal to emotion, and discussed

it extensively in his Rhetoric [124] [85]. Despite being largely criticised, the study

of pathos in rhetoric presents interesting opportunities for the application of the

work in this document. Logos, on the other hand, is critical to public oration,

particularly in judiciary settings. Still the rhetorical figures present in a text can

alter the emotional state with which the reader confronts the information present

in said text. By understanding how figures can be used to appeal to the audience’s

pathos we can guide computational linguistics tools the basis to construct documents

with particular emotional appeals.

Ethos, the appeal to character, plays the most critical role during the first part of

discourse. In order to make effective use of logos and pathos, the orator first needs

to establish his/her credibility with the audience. We will not consider ethos for

the scope of this study, as it is a field of significant debate, and there are no known

methods of objectively determining the ethical quality of a text.

Function

Whereas deviation and appeal are very general means of classifying figures of speech,

there are more fine-grained associations available. In fact, classification of figures by
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function is one of the most solidly established fields in rhetoric, having been covered

throughout the ages by numerous authors [81] [119] [36] [111] [147] [114] [138]. In

studying figures by function we can view the narrative as being ornamented and

armed with the figures used throughout the narrative [55]. This view of rhetorical

figures as tools is most relevant to this thesis. By considering rhetorical figures as

salient features of a document we can use them as the entities for determining local

coherence. Even more importantly, the classification of rhetorical figures by function

arms us with guidelines for substitution, giving us a key tool to using local coherence

as a guiding metric for natural language generation.

2.3.2 Semantic Analysis

A cardinal requirement for the work done in this thesis is that there be a method for

automatically or semi-automatically identifying rhetorical figures in generated text.

When discussing tropes we mentioned that to understand them we need to be able

to understand the semantic aspects of rhetorical figures. It is for that reason that

we turn to semantic analysis.

Lexical Semantics has been a growing field in recent years, boosted by continued

development in lexical ontologies which allow researchers to exploit their structures

and relations. The principal topics of research in the area of Lexical Semantics are

semantic similarity and semantic relatedness. Work on these two topics is performed

almost exclusively via the use of the WordNet lexical ontology [104], which has grown

to be de-facto platform for research on word and word-sense relations. Other recent

studies in similarity indices delve into the field of information retrieval, most notably
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exploiting popular search engines such as Google [19] [37] [12] and online collaborative

encyclopaedias like Wikipedia [22][62] [125]. Some of this research is then applied to

improve work in information retrieval, as shown by various researchers in the field

[93] [73] [80].

Notable among non-semantic relations is the study of distributional similarity as

proposed by Mohammad and Hirst [107], who eschew the use of WordNet and instead

takes a corpus-centered approach and statistical measures. Some modern approaches

by Fand and Friedman [57], Shimizu et. al. [128], and Cai and van Rijsbergen [30]

use a combination of WordNet and corpus-based similarity measures.

In this thesis we will focus solely on similarity measures based on WordNet, since

we are most interested in the explicit relations featured in it.

WordNet

WordNet [104] [102] [58] is the result of linguistic and psycholinguistic research at

Princeton University. It is a lexical ontology for modelling the English language.

In WordNet, information is structured based on word meaning, as opposed to more

traditional ontologies that use the word forms for indexing. As a result, the function

of words is reduced to that of a mere label, while the importance of meaning is

elevated to the core position of classification. In WordNet, the concept of ‘synset’

embodies this classification, and all other relations are built on top of it. The central

relation in synsets is synonymy, as a weakened form of the definition attributed

in classical literature to Leibniz. By ‘weakened’ we mean that the definition of

synonymy used in WordNet differs from the sense of ‘true’ synonymy (whereby two
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words are synonyms if they are always interchangeable in a sentence without altering

the truth value of said sentence) by allowing near-synonymy, whereby substitution

is not limited to single words. As a result, synonymy is defined as instances where

the substitution of expressions in sentences does not alter their truth value.

Having thus defined the central building blocks of WordNet, we can turn our

attention to how these synsets interact with each other. Literature on WordNet-based

metrics identifies two major camps: semantic similarity and semantic relatedness

[122] [24].

Semantic Similarity

Similarity in a lexico-semantic context is commonly denoted by the level in which

concepts resemble each other. It can be thought of as feature commonality or fea-

ture overlap [136]. It is a strong quality in that common features increase similarity,

whereas diverging features decrease similarity [91] [143]. Semantic similarity via the

use of feature commonality and feature overlap shares some methods with stylomet-

rics in that both shared as well as peripheral markers are used.

Edge-counting is the earliest and most common approach to measuring semantic

similarity [117]. It focuses entirely on hypernymy/hyponymy (IS-A/SUBSUMES)

relationships. A typical example of the edge-counting method is presented by Leacock

and Chodorow [89]. The authors base their entire similarity measure on path lengths

in the hypernymy/hyponymy network in WordNet. Similarity is then represented on

a scale from zero to one as a function of the length of the path, with a longer path

giving a lower score. The measurement of semantic similarity as a function of path
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length in WordNet has seen strong criticism. The major argument against it is

that the accuracy of this metric depends on the density of the relational network. In

particular, a setting with irregular densities (like WordNet) will produce inconsistent

results in sparse elements of the network.

As an answer to the criticism of edge-counting, an alternative approach was

proposed, pioneered by Resnik [122] and quickly adopted by the community. The

proposed approach has come to be known as node-counting, and focuses on employing

knowledge from external sources, such as corpus statistics, to provide a similarity

index on top of the given taxonomies in WordNet. Lin [91] proposed a generalisation

of the method to remove domain sensitivity from this approach. Central to their

argument is the notion that similarity is bound not only by common features, but

also by dissimilarities [143]. Most importantly, identical terms should be weighted

equally, no matter how many commonalities they share. Critics of the node-counting

approach argue that even though edge-counting is unreliable, it still provides a wealth

of information that is ignored by node-counting methods. It has also been debated

that stochastic, corpus-based methods require training, which is detrimental in that

it requires a significant time investment and is subject to bias via corpus selection.

As a result, hybrid methods have sprung up to fill the cleft between the two fields.

Hybrid counting methods, such as those of Jiang and Conrath [79], combine the

strengths of both previous approaches. Edge weights are used as a primary metric,

with corpus statistics applied as edge weights to correct inaccuracies that would

emerge from uneven network densities. Yang and Powers [149] further improved these

methods by increasing the network density through the inclusion of other relations
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present in WordNet beyond hypernymy/hyponymy. Finally, Pirró and Seco [113]

expand on the earlier work of Seco, Veale, and Hayes [127] to propose an alternate

corrective method to edge-counting by utilising the inherent structure of relation

networks in WordNet. Under this method a greater number of hyponyms indicates

that a term is less specific. The resulting metric is completely corpus-independent.

Semantic Relatedness

Semantic relatedness is a newer approach to relational metrics in WordNet. Unlike

semantic similarity, which focuses on the hypernymy/hyponymy (IS-A) network of

synsets, relatedness in a lexico-semantic context exploits as many relation networks

as possible, including similarity. Semantic similarity can thus, in a way, be seen as

a subset of semantic relatedness.

As with semantic similarity, work in the field of semantic relatedness started with

edge-counting. Among the pioneers in this method was Sussna [136], who tapped

the structures of semantic networks in WordNet for word sense disambiguation and

information retrieval. However, unlike semantic similarity, where a single relation

network is used, the edge-counting approach to semantic relatedness requires that

the algorithm weigh paths on separate semantic networks differently. Among the

two proposed weighing schemes is one not unlike that presented by Seco, Veale,

and Hayes [127], namely that the strength of association for a particular term in a

network is inversely proportional to the number of semantic relations for said term.

In a similar fashion, the other weighing scheme argues that the closer a node is to

being a leaf in the semantic network, the stronger its association with siblings is.
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A different approach to path-centered semantic relatedness was proposed by Hirst

and St-Onge [72]. Here, the authors postulate that the relations in WordNet can be

classified by their type, ‘upward’, ‘downward’ and ‘horizontal’. Relationship that can

be classified as hierarchical (e.g. hypernymy/hyponymy) fall under the upward and

downward categories, all others under the horizontal category. Using these classes of

relations, the authors then formulate a set of predefined ‘paths’ for which relations

are allowed. These paths are then used to determine if there is a significant relation

if no previous ‘strong’ relation (synonymy, antonymy, or compounding) is present.

Path-based approaches to semantic relatedness have in the past suffered from

lower performance against human controls when compared to semantic similarity

metrics [24]. Scriver [126] has improved the performance of network-centered met-

rics of semantic relatedness by systematically decomposing them, eliminating the

elements which turned out to be detrimental, and generating a simple formulation

that proved to match the performance of Yang and Powers [149] but using an algo-

rithm operating at lower complexity.

As an alternative to network-based metrics, Banerjee and Pedersen [7] proposed

a radically different method of classifying relations. Instead of looking at the rela-

tion networks and hierarchies in WordNet, they focused on a previously-disregarded

source: The glosses of synsets. The authors reckoned that there would be a link

between gloss relatedness and synset relatedness. They not only counted the num-

ber of overlapping words, but also scored higher those glosses for which common

terms shared similar ordering. This metric was further expanded by including synset

neighbours in the gloss searches.
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Applications and Limitations

We know that WordNet defines relations between synsets as networks of characteris-

tics. Key among them are hypernymy (IS-A) and its counterpart hyponymy, which

account to 65% of relations between noun synsets, holonymy (PART-OF) and its

counterpart meronymy, and derivation. Furthermore, WordNet 3.0 introduces the

INSTANCE-OF/HAS-INSTANCE relation. These relations can be exploited to give

a measure of relatedness and parallelism between figures, which we can then trans-

late into a metric of coherence in a fashion similar to the way referring expressions

indicate salience in current entity-based studies of local coherence.

Many rhetorical figures can be mapped one-to-one or without much alteration

to the relation networks present in WordNet. Take the example of synecdoche [119]

[36] [111] [114], whereby “a whole is represented by naming of its parts (...), or vice-

versa” [28]. This relation between the whole and its parts is clearly embodied in

holonymy/meronymy. We can thus infer that it is possible to use semantic relations

to determine the type of figure present. The similarity metrics presented in this

section can be adapted as a confidence measure by which we can judge how much a

section of text resembles a rhetorical figure. The main task yet to be resolved is the

actual identification of figures.

2.3.3 Detection and Classification of Rhetorical Figures

Having identified the desired discourse entities and method for understanding them,

we can now focus our attention to the actual task of detecting and classifying the

rhetorical figures.
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Detection

The method of detection of figures of speech will vary depending on the type of

figure used. Most of the work on rhetorical figures in computational linguistics is

focused on generating and/or understanding them, steps which are not necessary for

the work presented in this thesis. Some work on detecting rhetorical figures has been

described in Gawryjolek’s work on annotation and visualisation of rhetorical figures

[64]. However, we propose a method of rhetorical figure detection that differs from the

ones presented in by Gawryjolek. We choose to focus on the use of semantic analysis

to detect tropes. The major new contribution in this area is that the presented

method is capable of detecting rhetorical figures without the need to understand

them. Our focus on the use of semantic analysis makes figure detection possible

because the saliency of rhetorical figures does not depend on the meaning of their

constituent lexemes, but on their classification.

In order identify tropes, we first narrow the selection by doing a keyword search on

tokens common to the figures, if available. For example, the ‘is a’ phrase is common

to metaphors, as in ‘Life is a highway’ [39]. Next, we search for semantic markers

that would indicate the presence of a figure. Continuing with the previous example,

the semantic relatedness between ‘life’ and ‘highway’ is significantly lower than, say,

‘A highway is a road’. Most schemes can be identified via pattern matching, be it

structural (e.g. isocolon), token repetition (e.g. anaphora), or a combination thereof

(e.g. epistrophe). It may be recommended to select preferred pattern matching en-

gines for each kind of figure. Regular expressions, hidden Markov models [54] [115]

[116], rule-based parsers [15], corpus-based machine learning [16], lexical chaining,
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or transformation-based error-driven learning [17] [18] are all candidates. Some may

better fit patterns that maximise semantic similarity (e.g. diazeugma) or semantic

distance (e.g. antithesis), suggesting that a hybrid engine, which would begin se-

lection with either manual annotation or with pattern matching and refine searches

with semantic measures, may be the best approach.

Classification

By large, most of the work required for classification of rhetorical figures will be done

during the detection phase. Once a particular type of figure has been detected, it can

easily be sorted by function and deviation type. One area where additional classifi-

cation will be needed is when the figurative type of a discourse entity is ambiguous,

such as figures that share common keywords. In those cases it will be necessary to

examine the context of the entity (that is, its immediate neighbourhood) to disam-

biguate its type. In most cases a regressive examination of entities should suffice,

under the assumption that preceding figures of speech have a stronger correlation

with the examined entity. Where regression is not possible (such as no previous

entities existing) the disambiguation can be delayed until the succeeding entities are

annotated.
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2.4 Classification

2.4.1 Document Classification

A significant open problem in the area of Computational Linguistics is that of auto-

matic document classification. The goal is straightforward: Given a document and

several categories, automatic document classification attempts to determine which

category best fits the document. The history of automatic document classification is

nearly as long as that of natural language processing, with Borko and Bernick [13]

being among the pioneers in the field. As the data storage capacity of computing

systems increased, so did the the number of electronically encoded documents. Clas-

sification is strongly relevant to information retrieval, as document classification is

useful in indexing and searching for additional relevant documents.

Common methods of document classification use a stochastic approach, such as

Bayesian networks [97]. Other approaches are nearest neighbour classification, deci-

sion trees and subspace method [90]. We propose that the rhetorical figures present

in natural language documents can be used as a method of document classification

which is both independent and complementary to existing algorithms.

2.4.2 Intent Classification

In Information Retrieval studies, the term ‘intent classification’ is generally used

to label the classification for search queries. The field of Information Retrieval has

bloomed with the advent of the Internet, and the rapid growth of readily-available but

poorly-indexed documents. Query intent classification has many things in common
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with document classification, such as determining topic relevance [83] and nature of

the query (e.g. ‘informational’ vs. ‘navigational’)[21][78].

However, there is little work done on classifying the intent of user-generated

content as a metric. Instead research is generally focused on user-agent interaction,

whereby the agent tries to infer the intent of a user, usually through a set of queries

or dialogues [84] [92]. For content classification it is assumed in many cases that

the publishing medium is enough to determine intent. However, the proliferation of

user-content management and aggregation sites such as online journals, blogs, and

social networking sites generate a melting pot of content that offers rich opportunities

for classification strategies. Blogs in particular generate the most attention in this

regard, and some research has been initiated in terms of sentiment classification

[34][105].

2.4.3 Summary of Research Problems

In this chapter we have found unattended problems of metric-generation in natural

language processing. We have focused our attention around those areas and identified

the fields of study which we intend to combine in order to solve those problems.

We propose that specific rhetorical figures can be tied to particular forms of con-

text, and that it is possible to examine the rhetorical figures of documents to generate

enough context information to formulate a classification strategy for document in-

tent. We suggest that this strategy is useful in Information Retrieval fields such as

document classification, intent classification, and search optimisation.
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Chapter 3

Domain Analysis

In this chapter we will explore the domain in which our study on detection and clas-

sification of rhetorical figures is set. We focus this Chapter exclusively on detection

and preparation of rhetorical figures. Chapter 5 will have classification of rhetorical

figures as its focus.

The detection and preparation of rhetorical figures requires a set of preliminary

tasks. These tasks are the definition of the input corpora, the selection of a rhetorical

figure to detect, and the identification of the attributes which shall be recorded for

said figure. The last task can be divided into further sub-tasks - the identification of

implicit versus explicit attributes, and the identification of intrinsic versus extraneous

attributes. Explicit attributes are those stated in the formal definition of a rhetorical

figure, whereas implicit attributes are not formally stated but emergent from the

definition of the rhetorical figure. Similarly, intrinsic attributes define the rhetorical

figure itself, and extraneous attributes are part of the figure’s context. In this Chapter
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we will first examine the explicit intrinsic attributes of our rhetorical figure of choice.

In Chapter 4 we will further examine the figure’s implicit and extraneous attributes.

3.1 Preliminaries

A broad domain for epanaphora detection is undesirable as it introduces too many

variables. The most effective method of constraining the research domain is to con-

strain the detection and classification of rhetorical figures to a single figure. This

allows us to not only limit the number of variables involved in detection and classi-

fication, but it also enables us to proceed with a depth-first approach on rhetorical

figure research instead of a shallow and superficial examination of numerous figures.

Having decided that the most efficient approach to constraining the domain for

rhetorical figure detection is to restrict it to a single figure we needed to choose said

rhetorical figure. In this thesis we chose rhetorical anaphora as our champion fig-

ure. Rhetorical anaphora has no direct relation to linguistic anaphora. Linguistic

anaphora is commonly referred to simply as ‘anaphora’ in the domain of natural lan-

guage processing. In order unambiguously to differentiate between the two concepts

we will refer to rhetorical anaphora by one of its other common labels, epanaphora.

As mentioned above, restricting our domain to epanaphora enables us to perform

a focused, in-depth study of that one rhetorical figure. Concentrating our initial

study on just one rhetorical figure will give us the ability to refine our methodologies

and improve the performance of our system on a well-studied task with a predictable

rhetorical figure before expanding into more complex research.
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3.1.1 Epanaphora

Definition

The commonly used definition of epanaphora, or rhetorical anaphora, is very simple:

Epanaphora: Repetition of the same word or group of words at the

beginning of successive clauses, sentences, or lines.

Identifying any instance of epanaphora in documents is a fairly straightforward

task, as long as a parser and/or tokenizer are available to split the document into

paragraphs, sentences, and words. However, the tasks of parsing and tokenization,

while being able to reach near-human or in some cases better-than human accuracy,

are not 100 percent accurate. This means that some errors may be introduced by

these tools. We will address this issue later in this chapter. More important for the

detection and classification of repetitions as epanaphora is that not every repetition

is intentional, and not every intentional repetition has the primary goal to act as

epanaphora.

Identification

Determining the intent of a rhetorical figure is not a well-defined problem. However

epanaphora is classified as a figure of repetition by rhetoricians. We shall therefore

equate the intent of epanaphora with the intent of repetition as a rhetorical strategy.

Burton describes repetition as follows:

Repetition: “[A] major rhetorical strategy for producing emphasis, clar-

ity, amplification, or emotional effect.” [28]
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We can therefore label the intent of epanaphora as a strategy of repetition. Of

particular interest are the keywords used in the definition, namely emphasis, clarity,

amplification, and emotional effect . The use of these keywords provides strong hints

towards the purpose of epanaphora as a rhetorical strategy. Having thus narrowed

down the intent we can begin the work on generating a method for detecting, clas-

sifying, and sorting instances of epanaphora in real text as a function of a strategy

of repetition. We will use three primary classifications for detected epanaphora in

text. Each classification observes a different aspect of syntactic repetition versus

repetition as a rhetorical strategy. These aspects are as follows:

• Intentional with primary anaphoric goal,

• intentional without primary anaphoric goal, and

• unintentional.

Unintentional epanaphora are accidental repetition, or repetition with very low

confidence. The latter can occur when repetition is present in a paragraph, but the

coherence between sentences is below a certain threshold. For example, sentences

at opposite ends of a large paragraph share low repetition coherence because the

elements of the repetition are spaced far apart. This category is primarily reserved for

instances where an automated parser may detect a repetition but a human evaluator

would not.

Intentional epanaphora without primary anaphoric goal denotes the instances of

epanaphora where repetition is present and of high confidence, but where the primary

goal is not emphasis by repetition. One example of such intentional epanaphora
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You can either increase the power, or you can increase the speed.
If you increase the power, then you risk damaging the substrate.

If you increase the speed, then you risk overheating.

Figure 3.1: Anaphora with a repetition pattern.

Hurrah for love!
Hurrah for hope!

Hurrah for industry!
Hurrah for bonnie Canada, And her-bonnie maple tree!

Figure 3.2: Intentional rhetorical anaphora.

without primary anaphoric goal is antithesis (Figure 3.1). While antithesis does

not require repetition, the latter is still common among instances of antithesis, as

figures of contrast are in many cases built upon a framework of repetition. This

type of repetition is conspicuous to a human evaluator, but does not fit within the

constraints set by the definition of repetition as a rhetorical strategy.

Lastly, intentional epanaphora with a primary anaphoric goal are those repe-

titions that are conspicuous to human readers and whose intent falls within that

of repetition as a rhetorical strategy. Figure 3.2 shows an example of rhetorical

anaphora classified as intentional.

3.1.2 Data-sets

We used two input sets for epanaphora detection and classification. The criteria for

using two different data-sets in our research was to prevent training bias from setting

in. We divided our research into three distinct stages: discovery, advancement,

and finalisation. These three stages roughly correspond to Chapters 3, 4, and 5
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respectively. In terms of differentiation by procedures the discovery stage is primarily

driven by human evaluators, the advancement stage is driven by human-supervised

computational methods, and the finalisation stage is driven by chiefly automatic

computational methods.

For the initial discovery stages we used exclusively the Blog Track from the 2006

Text REtrieval Conference (TREC)[109]. TREC was created to provide the in-

frastructure necessary for comparing information retrieval and document ranking

methods on a large scale in a way that is easy to reproduce and evaluate. It con-

sists of 100,649 unique entries crawled from RSS and Atom feeds, producing over

three million documents. We focused on the TREC Blog Track as it provides us

with training and testing sets which are no domain-specific and are representative

of commonly-used prose of contemporary times. We deem both of these qualities

to be of key importance in the training set. By using domain-independent training

data we can ensure that we produce a domain-agnostic evaluation tool. By using

text that is representative of modern prose we are able to determine whether the

prevalence of certain rhetorical figures passes the test of time. To do so we can com-

pare the results from running our methods against modern prose, and the outcome

of performing evaluation against historical documents such as Victorian gazettes and

Shakespearean plays.

In the advancement stage we begin with the aforementioned TREC Blog Track

corpus. Towards the end of the stage we transition over to a corpus of Canadian

19th Century literature [38]. This corpus contains over 56 thousand unique pieces of

literature, digitised and converted to text using optical character recognition. During
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the rest of this thesis we will refer to this corpus simply as the literature corpus.

This source is significantly different in style than the TREC Blog Track corpus.

Since the literature corpus is based on print media it is more heavily-edited than

self-published blogs. This is most evident in the extensive and structured style with

which the content of the literature corpus is presented. In contrast the TREC Blog

Track source features more compact segments of text with loose coupling between

each segment.

The transition to the literature corpus in the advancement helped point out which

aspects of epanaphora detection and classification are subject to bias arising from

performing both training and evaluation on the same corpus or on split corpora

from a single source. In order to maintain this separation of training and evaluation

corpora, the finalisation stage was focused primarily on the literature corpus. The

use of the TREC Blog Track corpus was limited to regression testing of any variation

of the classification methods.

3.1.3 Text Handling

In Section 3.1.1 we explained that detection of epanaphora in text depends on prop-

erly identifying the boundaries between paragraphs, sentences, and words, but that

existing methods are not one hundred percent accurate. Our algorithms for detec-

tion and classification are not solely dependent on achieving absolute accuracy in

boundary detection, as long as the tokenization process is consistent. However, we

do wish to limit the error rate in boundary detection to reasonable margins.

Of the three boundaries that need to be identified for epanaphora detection and
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classification, the easiest for us to identify are word boundaries. English convention

dictates that words be separated by spaces and/or punctuation. Word boundary

detection is the one area where our detection and classification algorithms are most

resilient, since all but one of our criteria are content-agnostic when it comes to

words. This demonstrates the advantages of performing a preliminary analysis on

the domain of research before choosing the detection and classification criteria. By

using specific sets of words as the basic tokens for sentence comparison we are limiting

the requirements for accurate comparison to consistent and sufficiently granular and

atomic tokenization. ‘Sufficiently granular and atomic’ refers to finding tokens whose

size is appropriate to the task in which they are used. Where the task is epanaphora

detection and classification single characters are too small, and entire sentences are

too large. The best middle-ground is the tokenization of sentences into words based

on separation by spaces and punctuation At the very least this token size is sufficient

for our purposes. However we argue that using words as the base tokens is also ideal,

since their boundary detection is simple, thus minimising the boundary detection

error rate.

Paragraph Detection

To detect the boundaries between paragraphs in our input text we defer to the rich

markup of the original document. We take the given paragraph boundaries as defined

by the author (in the TREC Blog Track corpus) or by the optical character recogni-

tion software employed (literature corpus). The use of externally-defined boundaries

gives us the flexibility of dynamically determining the scope of paragraphs based on
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Worcester, Mass. Cottage ($I4.02)...........Portsmouth, N. H.
Danbury...............Danbury, Conn. Eastern Maine General...

Figure 3.3: Detection of abbreviations, decimal numbers, and ellipsis-like sentence
non-terminators.

cues from the input text. It would thus be trivial to switch the paragraph detection

to different markers based on the needs of our algorithm. In fact the literature corpus

further limits paragraphs to text within a single page. The reason for this limita-

tion is the inability of the character recognition software to differentiate between the

headers, footers, and main content of each page. Since many of the attributes for

epanaphora detection and classification depend on text continuity we decided to limit

the scope of our input corpora in favour of more internally-coherent paragraphs. It

is another statement in favour of the resiliency of our algorithms that this approach

has shown no signs of significant loss in accuracy.

Sentence Boundary Detection

The last boundary detection problem for epanaphora detection and classification,

sentence boundary detection is a hard, non-trivial problem in natural language pro-

cessing. It plays a primary role in many aspects of NLP because for much of the

work in natural language understanding the first step is sentence boundary detec-

tion. Some areas such as automatic summarisation, language models, and sentence

alignment rely heavily on accurate sentence boundary detection.

For the initial purpose of this study we used a näıve blacklist approach to sen-

tence boundary detection by splitting text at common punctuation characters: ”.”,
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”!”, and ”?”. We then created a set of whitelist rules and dictionaries to curb the

incidence of false positive results in sentence boundary detection. In other words,

the rules undo the sentence-splitting when it is deemed that the delimiters were not

used as sentence boundaries. The most common occasions for such incorrect sen-

tence boundaries are abbreviations (”Mr.”, ”ave.”, &c.), ellipsis (. . . ), and decimal

numbers. Ellipsis and ellipsis-like forms, single-character abbreviations, and numeric

values were targeted by generalized preset rules in the form of regular expressions.

Ellipsis detection looks for adjacent sentence terminators. Non-printable characters

are not counted against adjacency. Decimal numbers, on the other hand, are required

to be adjacent to the decimal period on both sides of said period. Single-character

abbreviations are also expected to be immediately adjacent to periods, but only on

the left of the period. An example of text with ellipsis-like non-sentence termina-

tors, a decimal number, and single-character abbreviations is shown in Figure 3.3.

More abbreviations were handled by custom dictionary entries that were built as

the abbreviations were encountered. The abbreviation detection process was sped

up by dedicating a portion of our efforts towards explicitly training the dictionary

of abbreviations. We performed sentence detection on the corpus, reviewed the sen-

tence boundaries, and added any abbreviations that were found during the review

to the dictionary. The process was then repeated multiple times until the incidence

of abbreviation boundaries fell below a threshold deemed acceptable.

We argue that a näıve implementation of sentence boundary detection like the

one described above is sufficient to accurately generate results via our algorithm.

Previous implementations of regular expression-based systems show that with some
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tuning a simple system can achieve 99.1% accuracy [1]. More complex systems

offer comparable accuracy, with error ratios of 0.52% [65], 1.65% [86], 1.45% [101],

1.0% [110], and 1.2% [123]. The implementation of these systems varies (in no

particular order) from SVMs to decision trees, part-of-speech lexicons and neural

nets, maximum entropy, and detection of abbreviations via heuristics. Even without

tuning, the measured baseline accuracy of 74% for naive sentence boundary detection

without whitelists would have been acceptable for training our system. The reasons

for the lower acceptable sentence detection accuracy are two-fold: First, most of

the results given for the systems previously described were based on training and

testing on domain-specific, well-formed text, namely the Wall-Street Journal corpus

from Penn Treebank [106]. That corpus is not an accurate representation of general-

domain text, and the error rates for tailored lists are significantly higher on TREC

Blog corpora. Second, we can extrapolate some of our reasoning for using simple word

tokenization to sentence boundary detection. For training, we were not interested in

locating every occurrence of repetition, but in ensuring that the ones we do detect

were appropriate. We therefore had the option to ignore the loss of results due

to truncation on periods which do not occur on sentence boundaries. Nevertheless

our whitelist-trained sentence boundary detector is capable of a measured accuracy

higher than 95%, far above the initial baseline accuracy of 74% of an untrained

system. This accuracy was measured by having our expert annotators tag sentences

with incorrect boundaries during the early stages of training of epanaphora detection

algorithms.

Finally, since paragraph detection, sentence detection, and figure detection all
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function independently from each other, our system is capable of individually ad-

justing the internal parameters for each of the tasks without affecting the execution

of the others. It would thus be trivial to adjust the system to be able to handle

domain-specific parses, such as treating lines of text as sentences in order to better

detect epanaphora in poetry.

3.1.4 Attribute Exploration

The process in which we proceeded with the exploration of attributes of repetition be-

gan with recording a rough set of metrics on attributes of epanaphora-like repetition,

followed by a consultation of expert authorities in the fields of rhetoric, rhetorical

figuration, and epanaphora [70], [56], [144]. During the consultations a small set of

predictions about the nature of intentional and accidental epanaphora were drawn

up. The next step involved refining the metrics of attributes of repetition in order to

verify or disprove these predictions. The evaluation of this last step was performed by

hiring expert reviewers to perform a qualified refinement of the recorded attributes.

The remaining sections in this chapter are dedicated to the exploration of the

intrinsic and explicit attributes of repetition. These attributes are the size of the

repeating pattern and the length of the repetition. We will study the following

aspects:

• The characteristics of each attribute,

• How the attributes are distributed among the corpora of intentional and acci-

dental epanaphora,
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• How this distribution correlates to the characteristics of the attributes, and

• How to ensure that all variants of an attribute’s characteristics are recorded.

The first three aspects – characteristics, distribution, and correlation – are intended

to foment the inclusion of human insight into the development of strategies for

epanaphora detection and classification. The last aspect is necessary to ensure that

the results from the previous aspects are comprehensive.

3.2 n-Grams

The most basic variation in detecting epanaphora is to observe the size of the repeat-

ing pattern. Increasing the size of the pattern is equivalent to increasing the number

of tokens that need to be matched between sentences before considering them as

matching our rules. Due to the nature in which the repeating patterns are recorded

we will also refer to this technique as the recording of n-gram overlap.

3.2.1 Decisions Supporting the Use of the ‘n-Gram’ Label

The term n-gram refers to a subsequence of n items within a given sequence. More

specifically, when labelling a subsequence as an n-gram we expect the items to be

contiguous. It is important not to confuse our use of the term n-gram with models

based on n-gram sequences, such as n-gram models which are largely used in statis-

tical natural language processing [53][95] for tasks such as part-of-speech tagging via

the use of hidden Markov models [44][54][115][116].
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Sx = x1, x2, . . . , yn
Sy = y1, y2, . . . , yn

Figure 3.4: Overview decomposition of sentences Sx, Sy into their x, y tokens.

Our choice for giving the label of n-gram to the subsequences that we search for

is founded on our wish to distinguish token subsequences (which occur across pairs

of sentences) and collections of paired sentences within paragraphs. Since the former

are gapless and sequential, we concluded that the best label choice is n-gram. The

decision is further enforced by our need to classify the subsequences by length, since

n-grams sport a convenient parallelism between the naming scheme and their length.

The symbol that we use to label n-gram overlaps in formulas will be η. For more

information on the naming scheme for sentence groups, refer to Section 3.3.

3.2.2 Formal Definition of n-Grams as Used in This Thesis

We already mentioned that n-grams are subsequences of tokens within sentences,

and that they are gapless and ordered. Given the definition for epanaphora, we

can further narrow down the definition of n-grams in epanaphora by requiring that

only leading paired tokens in each sentence be considered as an n-gram. In other

words, only n-grams that form at the beginning of sentences are considered. The

classification and labelling of the resulting n-gram will depend on the length of the

matched token subsequence.

Identification of n-gram overlaps in pairs of sentences follows an iterative ap-

proach. Consider two sentences, Sx and Sy (Figure 3.4). When looking for matching
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Sx = The deadline for registration is Monday.
Sy = The deadline for paying the registration fee is the Monday after.

Figure 3.5: Example of two sentences with a 3-gram overlap.

n-grams, we begin at the first token of each sentence (x1 and y1, respectively) and

proceed to compare the tokens pairs sequentially, comparing tokens with the same

subscript. The pair comparison continues until a pair is reached where the x and y

tokens are not equal (the first mismatch). The size of the n-gram overlap is deter-

mined by the number of matched pairs. For example, a n-gram comparison between

Sx and Sy in Figure 3.5 shows that [x1, x2, x3] equals to [y1, y2, y3] but that [x4] is

not equal to [y4], thus making the n-gram overlap between Sx and Sy is three. The

steps required to locate and classify an n-gram overlap are crystallised in Algorithm

3.1.

The formal logic behind Algorithm 3.1 is simple. In general terms, the n-gram

overlap η is equal to the size of the longest set of pairs R = {(x1, y1), . . . , (xn, yn)}

such that the rules in Equation 3.1 apply:

∀(xi, yi) • i = {1, . . . , n} ∧ xi = yi ∧ xn+1 6= yn+1 (3.1)

The first two parts of the right side of Equation 3.1 ensure that all pairs in R are

composed of equal values. The last part, xn+1 6= yn+1 indicates that the n+ 1th pair

is not composed of equal values. There are n (xi, yi) pairs in R, and we know that

the involved tokens are consecutive. We can therefore state that
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Algorithm 3.1 Find the longest n-gram overlap between sentences S1, S2

Require: S1, S2

1: l1 := length of S1

2: l2 := length of S2

3: if l1 = 0 or l2 = 0 then
4: return 0
5: end if
6: max := 0
7: if l2 > l1 then
8: max := l2
9: else
10: max := l1
11: end if
12: count := 0
13: while count < max and S1[count] = S2[count] do
14: count := count+ 1
15: end while
16: return count

η = |R| (3.2)

Furthermore we need to restrict R to non-empty sets (R 6= ∅). Expression (3.2)

can thus be expanded as follows:

η =

 0 if R = ∅

n otherwise
(3.3)

3.2.3 Lower n-Gram Bounds

By introducing a limit on the minimum length of an n-gram overlap, we can examine

the effect that such a lower limit has on the number of instances of intentional
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epanaphora. To add a lower limit we alter the conditions in Equation 3.3 to introduce

a floor value:

ηlower =


0 if R = ∅

0 if n < blower

n otherwise

(3.4)

Here we use the subscript lower to denote that the n-gram overlap η has a set

floor value. We now change Algorithm 3.1 to match these requirements:

Algorithm 3.2 Find η between sentences S1, S2 where η ≥ blower

Require: S1, S2, blower

1: l1 := length of S1

2: l2 := length of S2

3: if l1 = 0 or l2 = 0 then
4: return 0
5: end if
6: max := 0
7: if l2 > l1 then
8: max := l2
9: else
10: max := l1
11: end if
12: count := 0
13: while count < max and S1[count] = S2[count] do
14: count := count+ 1
15: end while
16: if count < blower then
17: count := 0
18: end if
19: return count

By adding the condition on lines 16-18 of Algorithm 3.2 we have thus set a lower

bound requirement for our n-gram overlap. We initially speculated that a larger n-
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gram overlap can be mapped to a higher confidence that an instance of epanaphora

is intentional.

Hypothesis 3.2.1. The size of a n-gram overlap is proportional to the confidence

that said n-gram overlap corresponds to epanaphora.

To back up Hypothesis 3.2.1 we argue that a larger n-gram overlap reduces the

likelihood of a repetition being accidental. That process should be particularly ev-

ident in text that has gone through an editing process involving either a human

reviewer or automated text repair. Accidental repetition is commonly eliminated

through techniques such as aggregation [43][118] and the introduction of referring

expressions [2][3][42].

Correlation Between Lower n-Gram Bounds and Intention

The length of n-grams in sentence pairs can have a significant effect on quality

of epanaphora identification. However, the length value alone cannot be relied on

exclusively as a deciding factor. As Figure 3.6 shows, the number of paired sentences

drops off very rapidly. This drop-off would be acceptable if the results for 1-gram-

and 2-gram overlaps were almost exclusively unintentional. However, that is not the

case, and even if one out of 100 results were intentional that number would be larger

than the total number of results for 5-gram overlaps. Furthermore, we discovered that

as we increased the bound blower, the perceived percentage of intentional epanaphora

actually dropped . We conclude that this lowered percentage of perceived intentional

epanaphora is the result of our choice of text source, particularly due to sentence

duplication and to the use of the medium for spamming.
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Figure 3.6: Instances of epanaphora at increasing lower bounds blower.

Figure 3.7: Instances of epanaphora where η ≥ blower (logarithmic).
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We didn’t get to the hotel in time to see the game [. . . ].
We didn’t get to use our reservations at the seafood buffet [. . . ].

Figure 3.8: 4-gram overlap of semantically divergent sentences.

One type of accidental epanaphora that we had hoped to reduce is the use of

divergent compound phrases. Figure 3.8 represents such a divergence. Each sentence

uses a different sense of the phrase get to – the first sentence uses it in the context

of movement, whereas the second sentence the phrase alters the tense of the verb

use. We had intended to push these types of repetition off the results chart by using

the lower bound, but the compound phrases occur too late in the sentence to be

effectively removed.

Earlier in Section 3.2.3 we had argued that higher values for the bound blower

indicate a better chance that a particular repetition is intentional. What we had not

considered, however, is the effect of more literal repetition on the rhetorical value

of the sentence pair. At constant average sentence length, a larger n-gram overlap

reduces the variation space for the remainder of the sentences. Given a cluster of

sentences of length n and an n-gram of length i, the variation space is of complexity

O(2j) on the remaining j tokens in each sentence, where j = n − i. As a result,

it becomes less likely for authors to produce significant (non-verbatim) patterns of

repetition with larger n-gram overlaps. Our theory is that this effect is an important

factor in explaining the rapid decline in instances of epanaphora as the size of the

bound blower increases.

Finally, we need re-examine Figure 3.6. The values are deceptive because the

number of found epanaphora at each step x include not only the instances of epanaphora
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with n-gram overlap x, but also all those of larger n-gram overlap. In effect, in Figure

3.6 the values for the bars at each step x follow formula 3.5:

f(x) =
n∑

i=x

ηi (3.5)

In order to get a more accurate view of the size difference between the sets of

epanaphora at each step we need to implement an upper bound bupper.

3.2.4 Upper n-Gram Bounds

The focus on n-grams so far has been on putting a lower limit blower on the number

of token pairs required to generate a desired n-gram overlap. However, in Section

3.2.3 we have laid out evidence that indicates that the majority of instances of

intentional epanaphora are encountered towards the short end of n-gram overlaps.

Figure 3.7 in particular tells us that the total number of instances of epanaphora

decays exponentially. We theorise that this trend is mirrored by intentional instances

of epanaphora. By introducing a ceiling boundary bupper we can put in place an

additional filter for the search range of η. We update Equation 3.4 and Algorithm

3.2 correspondingly.

ηlower,upper =


0 if R = ∅

0 if n < blower ∨ n > bupper∨

n otherwise

(3.6)

The important changes in Algorithm 3.3 are not only the introduction of the
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Algorithm 3.3 Find a η for S1, S2 where blower ≤ η ≤ bupper
Require: S1, S2, blower, bupper
Ensure: blower ≤ bupper
1: l1 := length of S1

2: l2 := length of S2

3: if l1 = 0 or l2 = 0 then
4: return 0
5: end if
6: max := 0
7: if l2 > l1 then
8: max := l2
9: else
10: max := l1
11: end if
12: count := 0
13: while count < max and S1[count] = S2[count] do
14: count := count+ 1
15: end while
16: if count < blower or count > bupper then
17: count := 0
18: end if
19: return count
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upper bound bupper and its inclusion on line 16, but also the requisite that blower

should not exceed bupper.

By setting an upper bound on the instances of epanaphora, we are preventing the

results from ηi from being poisoned by those from ηj, where i < j. We have discussed

in Section 3.2.3 how instances of epanaphora with large η are predominantly literal

duplications. While the exponential decay in number of epanaphora instances means

that these literal duplications have a significantly smaller effect as the gap between

i and j increases (ηi � ηj), the methods described in this section let us mitigate the

effect of those instances where i and j are close.

An additional advantage of using the bounds blower and bupper is that we are not

limited to searching for sentences of one particular length, but can instead search

over a range of sizes for the n-gram overlap η. This variable search range can be

used as an optimisation technique when there is no fixed target for the size of η, but

some reasonable limits are known.

We can now address the concerns raised at the end of Section 3.2.3, namely the

bias in Figure 3.6.

As Figure 3.9 shows, the number of instances of n-gram overlaps at each step also

decays exponentially. The slight jump for η = 9 is due to the count at that value

also including instances of larger size. What we did was set the upper limit such

that bupper =∞, in effect acting as if there was no ceiling at all.
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Figure 3.9: Instances of epanaphora where blower = η = bupper (logarithmic).
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3.3 Tuples

The previous section has been focused on finding sequences of paired tokens between

given two sentences. However, we have shown that n-gram overlaps are not sufficient

to accurately identify instances of epanaphora. Many epanaphora span multiple sen-

tences. In fact, we shall argue that a recurring pattern that spans multiple sentences

has a stronger likelihood of being intentional than epanaphora that span only a single

pair of sentences. In this section we will discuss our approach to sorting instances of

epanaphora by their recurrence patterns. During the rest of this thesis we will refer

to these recurrences as sentence tuples or just plain tuples .

3.3.1 Naming Scheme

In computer science and mathematics, the term tuple is assigned to ordered lists

of elements [61][137]. The etymology of the word tuple comes from the abstraction

of the words for collections of increasing sizes: double, triple, quadruple, quintuple,

sextuple, &c.

The key factor for using the term n-gram for subsequences of tokens in Section

3.2 and the term tuple for collections of sentences in this section is that, unlike the

subsequences in n-gram overlaps, our collection allows gaps (unmatched sentences) to

exist between the sentences comprising the collection. Since the definition of tuples

in set theory does not require elements of a tuple to be contiguous (only ordered

and typed), we judged that it is more appropriate for labelling the collections of

sentences for epanaphora. There is one caveat: In set theory, tuples are allowed to
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contain more than one instance of an object. Normally, the term set is used for tuples

without duplicate elements. However, we deem the term set to be too ambiguous

in the context of this thesis, hence we shall not use that label. For the purpose of

this thesis our sentence tuples shall be ordered collections of unique sentences. We

define a sequence of tokens – sentences being sequences of words, and words being

sequences of characters – within a document as unique if none of its constituent

tokens are contained within any other sequence. That is, there is no such token x

such that it is contained in both the sequence Si and the remainder of sequences

S − Si.

∀(Si) • i = {1, . . . , n} ∧ x ∈ Si ∧ x /∈ S − Si (3.7)

In contrast, two (sub)sequences S1 and S2 are equal if each element of the sequence

S1 has the same value as its counterpart in sequence S2. In effect, the search for n-

gram overlaps in Section 3.2 is a test for equality. By contrast, for two (sub)sequences

to be unique, all their constituent elements must occupy non-overlapping ranges

within the document. It is possible for two sequences to be unique but equal. If the

sequences are sentences within a document, then this means that S2 is a literal copy

of S1.

Figure 3.10 sums up and contrasts the attributes of n-gram overlaps and tuples .

Whenever we refer to a tuple in formulas, we shall use the symbol ϕ. In the next

section we shall define how tuples are constructed and identified for each paragraph

in a document.
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n-Gram overlaps:

• Ordered

• Gapless

• Tokens are not unique

• x1, x2, x3, x4, . . .

Tuples:

• Ordered

• Gaps allowed

• Unique tokens

• y1, . . . , y2, . . . , y3, . . .

Figure 3.10: Comparison between n-gram overlaps and tuples

3.3.2 Formal Definition of Tuples as Used

In our approach, searching for sentence tuples uses the same basic method regard-

less of the desired tuple size. The process has two primary steps: collection and

identification.

Collection

Collection (recording) of tuples is performed pair-wise in an iterative fashion. The

boundaries of the collection process are the boundaries of the current paragraph. We

begin with the first sentence S1 in the paragraph, and iterate over every sentence

in S2, . . . , Sn to find other sentences that can be paired with S1. The next iteration

begins at S2, and proceeds over S3, . . . , Sn. In effect we are performing a comprehen-

sive search for n-gram overlaps within each paragraph. This comprehensive search

process is crystallised in Algorithm 3.4.

The set of pairs returned by Algorithm 3.4 is not yet a proper tuple. In fact, the

collection of pairs returned on line 13 of Algorithm 3.4 has the potential of having

bn
2
c tuples, if a paragraph consists of n

2
unequal n-gram overlaps. We will later show

how it is actually possible to find n − 1 distinct tuples in a paragraph if each pair
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Algorithm 3.4 Find the comprehensive set of n-gram overlaps in paragraph P

Require: P = S1, . . . , Sn

1: if n < 2 then
2: return [ ] {Empty collection}
3: end if
4: pairs := [ ] {New ordered list}
5: for i := 1 to n− 1 do
6: for j := i+ 1 to n do
7: r := FindNGram( Si, Sj )
8: if r > 0 then
9: pairs← [Si, Sj, r] {Append [Si, Sj, r] to the pairs collection}
10: end if
11: end for
12: end for
13: return pairs

in pairs has a different n-gram overlap size r. But first we need to understand the

process of identifying a tuple out of the pairs collection from Algorithm 3.4.

Tuple Size Identification

Each entry in pairs consists of a sentence pair Sa, Sb and the size r of its n-gram

overlap. We know that to form a pair from Sa and Sb, the size r of their n-gram

overlap has to be non-zero. If the length of the collection pairs is one, then Sa, Sb is

the only tuple in paragraph P . Since only two sentences are involved in this tuple,

they are a double. Therefore, the (non-trivial) base case is that there is only one

tuple in P , and that it is a double. Every step below this point will assume that the

size of the set pairs is two or greater. Since we know that pairs has two or more

entries we need to be able to distinguish between them. We shall label each of the

entries in the set pairs as ρ, where pairs = ρ1, . . . , ρn. Let us examine some of the

65



properties of the elements of ρ.

We know that each ρ in pairs contains two sentences, Sa and Sb. Furthermore,

we know that they have a certain order, as set in line 9 in Algorithm 3.4. This order

is important to us. In particular, it guarantees that if the sentence order in element

ρi is Sa, Sb, then there will be no element ρj where j > i and Sx, Sa ∈ ρj. In other

words, if Sa is the first sentence in ρi, then we are guaranteed to know that Sa will

not occur as the second sentence in any later element ρj. This statement is simple

to prove. Line 9 shows Si as being the first element in any entry ρ. Si depends on

the outer loop on line 5. Therefore, any entry with Si as the first element (Sa) of

ρ must occur within this iteration of the outer loop. Furthermore, Si will not be

present in any entry ρ after this iteration of the outer loop. The absence of Si in

any ρ after the current iteration of the outer loop is because the outer loop will have

advanced to i+ 1, and because the inner loop on line 6 guarantees that j is greater

than i. Thus, after the ith iteration of the outer loop, Si will not occur again in any

entry ρ in the pairs collection.

Observation 3.3.1. If Sx is the first sentence in ρi, then Sx is guaranteed to never

be the second sentence in some ρj where j > i.

Furthermore, we know that all entries ρ where Si is the first element Sa must

occur within iteration i of the outer loop in Algorithm 3.4, and that all entries ρ

created during iteration i of the outer loop must have Si as Sa. From that knowledge

we can extract the following two observations:

Observation 3.3.2. Any entries ρx, ρy where Sa,x = Sa,y must come from the same

iteration of the outer loop in Algorithm 3.4.
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Observation 3.3.3. Take any two entries ρx, ρy where x < y and Sa,x = Sa,y. For

every other entry ρi where x < i < y we can guarantee that Sa,x = Sa,i = Sa,y.

We can also say something about the order of the second sentence, Sb, in each

entry ρ that has the same first sentence, Sa. Since each Sa in these entries is the

same we know from Observation 3.3.2 that the outer loop in Algorithm 3.4 must not

advance among these entries. Therefore, the only change between these entries must

come from the inner loop on line 6 of Algorithm 3.4. Since this loop advances j in

a sequential order, we can guarantee that the location of Sb,j in the entries ρ are

ordered according to their occurrence within paragraph P .

Observation 3.3.4. For every entry ρ with the same first sentence Sa, the order in

which the second sentences Sb appear in the paragraph determines the order in which

the corresponding entries ρ appear in the collection.

Finally, we can derive another observation from the collection pairs. Each entry

ρ in the collection that has the same Sa must share at least one common tuple ϕ. It is

a given that there is a non-zero n-gram overlap for each sentence pair Sa, Sb in these

entries ρ. It follows that for each entry ρ, at least the first token in each sentence is

equal. Furthermore, since Sa is present in every entry, the sentences in each entry

rho must contain at least one equal token at the beginning of the sentence. This

means that every of these entries ρ must share a tuple with the minimum n-gram

overlap of one token.

Observation 3.3.5. For each set of entries ρ that share a common first sentence

Sa, there must exist a tuple of size at least equal to the number of such entries ρ.
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We can expand on observation 3.3.5 and garner some additional knowledge about

the maximum tuple size for any sentence Sx. We know that a sentence with a non-

zero n-gram overlap against at least one other sentence must appear in any entry

ρ of the collection zero or more times as Sa, zero or more times as Sb, and at least

one time as either Sa or Sb. We also know that all entries where Sx appears as Sa

are contiguous, and that there is no entry where Sx appears as Sb after any entry

where it appears as Sa. Therefore we can conclude that any entry with Sx as Sb

must appear in the collection before any entry with Sx as Sb.

Observation 3.3.6. Any entry with Sx as Sb must appear in the collection before

any entry with Sx as Sb.

We know that all entries with Sx as Sa match Sx against sentence that occur after

it in paragraph P . Since the inner loop prevents us from matching any sentence Si

against sentences that occur before it in paragraph P , we can thus deduce that any

pairing of Sx against any sentence that occurs before it in P must be handled in

entries where Sx occurs as Sb. If Sx occurs as Sb in any entry ρ, then it must be

because some sentence Sy (where y < x) was matched against it during the outer-

loop iteration for y. In addition, additional occurrences of Sx as Sb must be the

result of a match against a different Sy. Each of these entries is unique. Therefore

we conclude that each occurrence of Sx as either Sa or Sb is unique. Lastly, we

can state that there is no sentence Sz such that Sx and Sz form a non-zero n-gram

overlap, but where there is no entry ρ in the collection such that Sx = Sa, Sz = Sb

or Sz = Sa, Sx = Sb. In other words, a non-zero n-gram overlap between any two

sentences Sx and Sz must generate an entry in the collection pairs.
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Observation 3.3.7. There is no sentence Sy such that the n-gram overlap between

Sx and Sy is non-zero and there is no entry ρ in the collection where both Sx and Sy

are present.

Observation 3.3.8. A non-zero n-gram overlap between any two sentences Sx and

Sy must generate an entry ρ in the collection, such that (Sx = Sa ∧Sy = Sb)∨ (Sy =

Sa ∧ Sx = Sb)

Therefore, any sentence that generates a non-zero n-gram overlap with Sx gen-

erates an entry where Sx = Sa ∨ Sx = Sb. If we combine Observation 3.3.8 with

Observation 3.3.5 we get the following:

Observation 3.3.9. For each set of entries ρ that share a common sentence Sx

where Sx = Sa∨Sx = Sb, there must exist a tuple of size at least equal to the number

of such entries ρ.

Combining Observation 3.3.9 with Observation 3.3.7 we can also generate an

upper bound for tuples involving Sx:

Observation 3.3.10. For each set of entries ρ that share a common sentence Sx

where Sx = Sa ∨ Sx = Sb, the largest tuple possible tuple size involving Sx is equal to

the number of such entries ρ.

Lastly, we observe that, by selecting the appropriate Sx, we can optimise our

search for maximum tuples. From Observation 3.3.6 we know that for Si = Sa ∈ ρ1

in the collection there are no entries for which Si is Sb, and from Observations 3.3.7

and 3.3.8 we know that all non-zero n-gram overlaps in P generate an entry in
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the collection. Furthermore, we know that all entries for Si are contiguous, due to

Observation 3.3.3. Therefore, the subset of entries from the collection where Sa = Si

is the largest tuple ϕ for the minimum n-gram overlap involving Si. Any other entries

that involve any sentence Sj of the Sb sentences from this subset must be paired with

other Sb sentences, and cannot involve any sentence not matched against Si. If there

was any entry ρm such that Sa,m = Sj or Sb,m = Sj where Sj is one of the Sb sentences

for Si, but where Sk = Sb,m ∨ Sa,m is not one of the Sb sentences for Si, then that

would violate Observation 3.3.7 because Sk and Si must share a non-zero n-gram

overlap. We can therefore count all the entries for Si, eliminate any additional entry

involving each Sb for Si, and repeat the process. Each time, the count represents the

maximum size for a unique tuple in this paragraph.

Observation 3.3.11. For Sx = Sa,1, the largest tuple involving Sx can be found by

locating all entries in the collection that have Sx as their Sa.

We thus have collected enough information to generate a list of unique tuples

ϕ in paragraph P . as mentioned, the process to do so requires iteration over the

collection of entries generated during Algorithm 3.4. The result is Algorithm 3.5.

Algorithm 3.5 breaks down as follows – lines 4 to 7 identify the first tuple ϕ1

in collection C, based on Observation 3.3.11. This tuple is then stored for later

perusal. In lines 12 to 20 we are locating entries in C that have no relation to the

entries in tuple ϕ1. We know that the first k entries belong to tuple ϕ1; Line 13

bypasses these. By this point we also know that none of the remaining entries in

collection C will have any sentence that is equal to Sa from any of the entries in ϕ1,

due to Observations 3.3.3 and 3.3.6. Therefore we only need to check the remainder
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Algorithm 3.5 Find the unique tuples in collection C

Require: C = ρ1, . . . , ρn
1: if n < 2 then
2: return C {There is only one tuple, a double}
3: end if
4: i:=1
5: while Sa,i = Sa,1 do
6: i := i+ 1
7: end while
8: tuples := [ ]
9: tuple← [ρ1, . . . , ρi]
10: tuples← tuple
11: remain = [ ]
12: for j := 1 to n do
13: if j > i then
14: for k := 1 to i do
15: if Sa,j 6= Sb,k and Sb,j 6= Sb,k then
16: remain← ρj {ρj is part of a different tuple, store}
17: end if
18: end for
19: end if
20: end for
21: temp := recurse( remain )
22: for m = 1 to length of temp do
23: tuples← tempm
24: end for
25: return tuples
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The deadline for registration is Monday. The deadline for paying the registration
fee is the Monday after. You will not be able to register over the weekend. You

may want to pay the registration fee at the same time as you register. You will be
e-mailed your registration details upon payment receipt.

Figure 3.11: Two unique tuples in a paragraph.

of collection C for entries that contain any of the Sb sentences in tuple ϕ1, which is

done in Algorithm 3.5 on lines 14 and 15. Finally, line 16 is reached if and only if

entry ρj is not related to tuple ϕ1. We therefore store this entry in a separate list

for recursion, being careful to preserve the order of the entries. The return value,

tuples, is the collection of all maximal,unique tuples in paragraph P .

3.3.3 Non-Unique Tuples

We have demonstrated how Algorithm 3.5 can identify all maximal, unique tuples in

paragraph P . By maximal and unique we mean the largest non-overlapping tuples.

Figure 3.11 shows two unique tuples. The first one, ϕ1, has the n-gram overlap ‘The

deadline for’, and the second one,ϕ2, has the n-gram overlap ‘You’. The second

n-gram overlap is maximal in that it sacrifices overlap size in favour of matching

a larger number of sentences. There are three other, non-maximal and non-unique

tuple in the given paragraph. One such tuple is the one corresponding to the n-

gram overlap ‘You will’, and it spans sentences three and five. It shares a partial

sentence space with the tuple ϕ2. We shall name it ϕx. The last two non-unique,

non-maximal tuples are ‘The’, and ‘The deadline’. Both these tuples have the same

sentence span as tuple ϕ1, but have a smaller n-gram overlap. These tuples will
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You may want to pay the registration fee at the same time as you register. You
will not be able to register over the weekend. You will be e-mailed your

registration details upon payment receipt.

Figure 3.12: Two unique tuples in a paragraph.

not be generated by our algorithms, because they only provide partial information:

Their n-gram overlaps are incomplete.

Tuple ϕx, however, is more interesting. Both tuples ϕ2 and ϕx are complete,

but they emphasise different goals. Tuple ϕ2 focuses on tuple width, as currently

implemented by Algorithm 3.5. When performing a comprehensive search for all

possible tuples we are just as interested in the tuples of type ϕx as we are in the

unique, maximal tuples like ϕ2. In order to distinguish between maximal tuples and

their variations we will take advantage of the recorded n-gram overlap size r from

Algorithm 3.4. We have so far ignored this feature of our collection algorithm, but

it gives us just the right information to discriminate between these tuples.

Algorithms 3.6 and 3.7 incorporate the use of the recorded n-gram overlap length

r. The major change in Algorithm 3.6 is that it uses Algorithm 3.7 to generate non-

maximal tuples from the unique maximal tuple tuple. Furthermore, we do not discard

the entries that match the different Sb sentences. Instead, we use the information

provided by them to determine the minimum size of the shared n-gram overlaps.

The reason is that the shared n-gram overlap size of tuples of a particular size may

be larger than those matched against the entries for the Sa sentences. To exemplify

this, let us re-order the sentences from Figure 3.11 as shown in Figure 3.12. The

maximum n-gram overlap for ϕ1, as shown in bold text, is of size one. That is
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Algorithm 3.6 Find the unique tuples in collection C

Require: C = ρ1, . . . , ρn
1: if n < 2 then
2: return C {There is only one tuple, a double}
3: end if
4: i:=1
5: while Sa,i = Sa,1 do
6: i := i+ 1
7: end while
8: tuples := [ ]
9: tuple← [ρ1, . . . , ρi]
10: remain = [ ]
11: for j := 1 to n do
12: if j > i then
13: for k := 1 to i do
14: if Sa,j = Sb,k or Sb,j = Sb,k then
15: tuple← ρj
16: else
17: remain← ρj
18: end if
19: end for
20: end if
21: end for
22: temp := findNuTuples( tuple )
23: for m = 1 to length of temp do
24: tuples← tempm
25: end for
26: temp := recurse( remain )
27: for m = 1 to length of temp do
28: tuples← tempm
29: end for
30: return tuples
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Algorithm 3.7 Find the non-unique tuples in subset Z

Require: Z = ρ1, . . . , ρn
1: maxng = 0
2: for i := 1 to n do
3: if ri > maxng then
4: maxng = ri
5: end if
6: end for
7: nutuples = [ ]
8: for i := 1maxng to 1 do
9: temp = [ ]
10: for j := 1 to n do
11: if rtuple,j ≥ maxng then
12: temp← ρtuple, j
13: end if
14: end for
15: count = 0
16: for j = 1 to length of temp do
17: while Stemp,a,j = Stemp,a,1 do
18: count := count+ 1
19: end while
20: end for
21: minng = false
22: for j = 1 to count do
23: if rtemp,j = 1 then
24: minng = true
25: end if
26: end for
27: if minng = true then
28: nutuples← [ρtemp,1, . . . , ρtemp,count]
29: end if
30: end for
31: return nutuples
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because the first sentence is only capable of matching one token of the other two

sentences. If we rely our measurement of the non-unique tuples only on the length of

the n-gram overlaps involving Sa, then we will only be able to locate tuples with an

n-gram overlap of size one. If, however, we search the entries generated by matching

the Sb sentences against each other, then we are able to locate the proper non-unique

tuple ϕx with an n-gram overlap size of two (in italics).

3.3.4 Distribution of epanaphora by tuple size

When running our input documents through Algorithm 3.6 we expected a similar

distribution of instances of epanaphora as we had found when performing the n-gram

search. Indeed, the distribution in Figure 3.13 we see that this trend continues. The

apparent tapering on the last column is due to it including tuples of size five or

larger.

3.4 Summary

In this chapter we have defined the focus of our study, rhetorical anaphora. We have

examined its common definition and produced our own disambiguated description.

The purpose of this disambiguated description was to create a definition that could

be easily applied to computational methods. This definition included the distinction

between intentional and accidental epanaphora, the definition of primary attributes

of epanaphora-like repetition, and an examination of their likely influence on the

intentional nature of epanaphora.
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Figure 3.13: Epanaphora distribution by tuple size.

Figure 3.14: Epanaphora distribution by tuple size (logarithmic).
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We also reviewed the process in which we selected a corpus for epanaphora detec-

tion and classification, and laid bare the justifications in favour of using the TREC

Blog corpus.
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Chapter 4

Epanaphora Detection

In this chapter we will examine additional refinements that may be layered on top

of the two primary variations, n-grams and tuples. We call these refinements ‘sec-

ondary’ because they are not intended to extend the variation space of epanaphora

beyond that of the primary criteria. Instead they are meant to aid in generating

a more fine-grained method of differentiation between accidental, brute-intentional,

and designed-intentional epanaphora. We will focus on three types of secondary

variations: Gaps, keywords, and sentence length.

Once the secondary variations have been defined, we shall examine the methods

that can be applied in creating an efficient epanaphora detection service. Beyond

providing the benefit of performance gains, this section will also allow us to under-

stand epanaphora better by helping us become familiar with their variation space.

Finally, we will perform a preliminary examination of the results of epanaphora

detection, as well as study the steps necessary for generating a useful epanaphora
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I felt moody and irritable. I felt squished inside, I felt like standing in
a field and twirling in circles with my arms spread wide, twirling and
twirling and twirling until I fall. Is it the driver’s license? I felt over-
whelmed by it tonight.

Figure 4.1: Example of a gap between epanaphora constituents

classification service. In order to do so we will divide this step into three tasks: Early

examination, prediction, and corroboration via a pilot study.

4.1 Gaps

In the context of epanaphora detection, gaps are any sentences (or phrases/lines,

depending on the definition of epanaphora used) that are not part of a repetition,

but occur between the constituents of said repetition. Figure 4.1 shows an example of

a gap of length one (in italics). There are four sentences in that paragraph, but only

three of them (sentences one, two, and four) contain the repetition I felt . Sentence

three is an interruption of the repetition, sequence, a ‘gap’.

4.1.1 Relevance

In comparing n-gram and tuple searches (Figure 3.10) it was stated that one major

difference between them is that tuples allow gaps between their constituents. That

aspect had not been examined in detail because it did not hold relevance to repetition

of elements, the patterns of epanaphora classification studied in Chapter 3. However,

closer examination of the impact of gaps on the quality of epanaphora promises to

improve our knowledge on the use of intentional repetitions.
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Just as it was possible to generate variations by putting boundaries on tuple and

n-gram searches, so too is it possible to introduce another dimension of variation by

placing limits on the size of the gaps between sentences forming a tuple.

The most salient reason for considering gaps between constituents of epanaphora

is the particular wording of the definition of epanaphora.

Epanaphora: Repetition of the same word or group of words at the

beginning of successive clauses, sentences, or lines.

The key words that we will focus on in this section are successive clauses . In

Chapter 3 we formed the definitions of the primary attributes of epanaphora based

on the assumption that successive clauses implies sequence, and that the order of

occurrence of the constituents of an epanaphora is of importance. However, successive

clauses can also be interpreted as consecutive clauses . This second definition implies

not only that the sentences that make up an instance of epanaphora are sequential,

but also that they are in close proximity of each other. In its most strict sense, it

implies that the only gap size that is acceptable is a null-gap. We will not adhere

to this strictest definition of ‘consecutive’ because there are numerous cases where

a gap may occur between the constituents of an epanaphora. An example of such

has already been shown in Figure4.1. Gaps may be intentional by the author, or

they may be the result of an error on the part of the sentence detector. These errors

can occur in unsupervised sentence detection tools where there is an ambiguous use

of punctuation, such as uncommon abbreviations and mixed descriptive text and

dialogue.
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Despite the having shown that naturally and unnaturally-occurring gaps between

the constituents of epanaphora are possible, it can be contended that it is important

to maintain a minimal distance between these constituents. The reason for such

an argument is rooted in neuroscience and psychology, in particular the study of

short-term memory, and is commonly referred to as the memory span. Memory span

is the longest list of items that a person can repeat back in correct order. If the

gap between two or more constituents is too large, then recollection of the earlier

constituents can be hampered. As a consequence of the lower recollection of earlier

constituents of repetition the saliency of said repetition, and therefore its rhetorical

effect, are diminished. We therefore claim that larger gaps between the constituents

of an instance of epanaphora can be linked to lower perceived intentionality of said

instance by human readers. We follow up on the justification for lower perceived

intentionality by readers and apply it to the author’s perspective: An author that

is aware of the theory of memory span will attempt to counteract the effect of large

gaps on the recall of of his/her audience by actively avoiding placing the elements of

a repetition too far apart.

We propose that intentional epanaphora encountered contain gaps shorter than

the ‘magical number seven’ [103]. In its most rudimentary application this number

will provide a reasonable initial threshold value for performing pruning of detection

results, should the need arise. By starting out with this value as the threshold and

examining its variation on the intentionality of detected instances of epanaphora we

can furthermore provide additional circumstantial evidence to support or contradict

the postulations of the ‘magic number seven’ theory and its derivatives.
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4.1.2 Gap Detection

As mentioned in the introduction to this Chapter, we have decided to classify gaps

as a secondary variation. Given the previous discussion on the relevance of the study

of gaps in epanaphora, it can be argued that gaps should perhaps take a larger

role in epanaphora detection, and that they should perhaps be classified as primary

attributes of epanaphora. The chief reason for not doing so is that gaps do not extend

the dimensions of variation of n-grams and tuples combined. In other words we mean

that there is no sentence that can be selected via the addition of gap constraints that

cannot be selected via the primary attributes. The simplest method of backing this

statement is to go back to the proofs in Chapter 3. We demonstrated that the

primary attributes perform a comprehensive search of the valid sentence variations

for epanaphora. The way we use gaps as a secondary attribute of epanaphora in this

thesis is to split any sequence of repeated sentences based on their proximity. Since

the initial sequence has already been selected by primary attributes, and the sum of

the sub-sequences cannot have more elements than the initial sequence we can say

beyond shadow of a doubt that the application of the gaps constraints attribute is

performed as a constrained mechanism of selection by proximity on top of n-gram

length, and therefore is not capable of selecting any new sentences for repetition.

Both the gaps and the tuple width attributes are variations of the tuple space.

Tuple width selects by frequency, gaps select by proximity. Given the choice of ap-

plying one attribute before the other we chose to give precedence to the tuple-width

attributes over the tuple-gap attributes. As a result n-gram and tuple-width vari-

ations are applied first, and gap variations are applied as a filter on top of those.
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Nevertheless, the resulting dimension of variation is equal to the one returned if

n-gram and gap variations are applied first, then tuple-width. The reason for the

results being the same is that tuple-width selection and tuple-gap selection are inde-

pendent constraints which could be applied simultaneously. However, the advantage

of performing a tiered system of attribute detection (as opposed to a parallel im-

plementation) is that the additions can only limit the dimensions of variation, not

expand them. Taking the n-gram space η, the tuple space ϕ, and the gap dimension

γ we can write this relation as

0 ≤ η · ϕ · γ ≤ η · ϕ (4.1)

By simplifying this formula we get

0 ≤ γ ≤ 1 (4.2)

Since γ is no longer unbound it should no longer have a significant bearing on

the overall complexity of the tiered attribute detection system. Such a claim can

be easily demonstrated by resorting to a property of the size of gaps, namely that

the maximum number of gaps is equal to the maximum number of consecutive pairs

within the constituents of an instance of epanaphora. Therefore if there are n con-

stituents, then there will be a maximum of n− 1 gaps. We can look at the sentences

and gaps as an acyclic path graph. Each edge can have a weight ewi where i ∈ N0.

Edges of weight ewi > 0 are counted as gaps. The edge weight is determined by the

number of non-constituent sentences that occur in a paragraph between constituent
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sentences of epanaphora. Since each constituent sentence corresponds to one node

and there are a maximum of n nodes, we have n− 1 edges. The maximum number

of gaps is n − 1 when all edges have weight ewi > 0. By tying the size of the γ

dimension to that of ϕ space we can collapse the complexity formula:

O(η + ϕ+ γ) = O(η + ϕ · 2) = O(η + ϕ) (4.3)

We have thus shown that the complexity of epanaphora detection with ngram-

length, tuple-width and gap-length is no worse than that of ngram-length and tuple-

width alone.

4.1.3 Implementation

The core implementation of detecting the gap size of a collection C of sentences in

an instance of epanaphora revolves around comparing the indices of the constituents

of said collection in their source paragraph P . The gap between two sentences Sa

and Sb (occurring in that order) is achieved by subtracting the index of Sb from Sa

and reducing the result by one. The last reduction is necessary because the index

of consecutive sentences is incremented by one for each sentence. Since consecutive

sentence are gapless, we need to adjust for that increment. This approach is embodied

in Algorithm 4.1. Combination with n-gram detection follows the same steps as

Algorithms 3.6 and 3.7.

Algorithm 4.1 Calculate the size of the gap between ordered sentences Sa and Sb

Require: Sa, Sb

1: return indexSb
− indexSa − 1
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Due to significant alterations to the design of the core algorithms later in this

Chapter we will only keep this algorithm at the prototype stage until the new core

of the epanaphora detector has been implemented.

4.2 Keywords

The type of words used in a repetition can have a significant impact on the effect

of said repetition. We argue that certain words and classes of keywords have a

strong relation to epanaphora, and that they can be used to disambiguate between

intentional epanaphora and accidental repetition.

In this study we focus solely on the first word of each repetition. The reason for

narrowing our keyword focus is that the relative placement of the keywords within a

sentence is just as significant to the function of said keyword as the relative placement

of repetitions with respect to each other. Since we can only guarantee the consistent

placement of the first word of each repetition we decided to limit our keyword search

to only those. A residual effect of this decision is that is becomes easier to select

classes of keywords for separate classification.

Two primary categories of words are recorded: The direct word, and the keyword

category. The direct word is the token as it appears in the sentence, and requires no

training. The keyword categories are defined below.

We use a frequency-based selection method for keywords. This selection is per-

formed iteratively by selecting a frequently-occurring keyword, finding a word class

that can be used to generate more matches, and grouping all the results for that
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class. In some cases a chosen class becomes too large, a particular keyword has

significantly higher incidence than the other words within that class, or a keyword

is deemed to be used primarily for a different purpose than the rest of its class. In

such cases a separate sub-class is created specifically for those words.

The rest of this section is dedicated to examining the particular classes of key-

words that arose from the strategy described above. We will show the classes, which

keywords they encompass, and what the major perceived purpose of each class is

(based on a cursory examination of common results.

4.2.1 Personal Pronouns

She was disappointed. She could have but little idea that it was of firm

purpose he avoided her. She could not know that he, like herself, had

recognised the sympathetic mind, but, unlike herself, had recognised far

more..

The personal pronoun class of words encompasses nouns which act as a substitute

for proper nouns and other nouns. What makes this class interesting is that it

was identified before the keyword classification process was put in place. Personal

pronouns, when used at the beginning of sentences, establish the identity to which

the rest of the sentence is applied. This base identity is more commonly known

as identity of reference. Establishing such an identity is a key step to successful

persuasive oratory.

Another reason to look at personal pronouns in particular is because their na-

ture as noun substitutes means that they are frequently used in linguistic anaphora
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(coreference). It might thus be plausible that we could find a correlation between

the use of linguistic anaphora and the use of rhetorical anaphora.

Predictions

Our prognostic is that the use of repetitions of personal pronouns shall fall into two

categories: The expression of a feeling or desire, and event recounts. Both categories

can be used to create a strong rapport with the audience. The former is commonly

used in a direct appeal to the audience’s pathos by emphasising the humanity of the

speaker and usually generates a positive emotional link between the orator and the

audience. Event recounts, on the other hand, are an indirect appeal by engendering

a feeling of community. This indirect appeal can be either towards the audience’s

positive emotions by defining the audience’s community and situating the orator

within that group, or it can appeal to the audience’s negative emotions by playing

on the audience’s negative emotions to a third party.

Self Identity

I have never gazed on the lofty summits’ of the Andes. I have never seen

the Niagara. I have never roamed through classic Greece.

One particular personal pronoun deserves its own category, and that is the self

identity as per the first person singular ‘I ’. The reason for this isolation of the first

person singular case is the sheer number of unique instances of repetition that feature

this keyword. The TREC ’06 Blog corpus features these repetitions with unusually

high frequency due to the nature of its contents.
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In addition, first- and second-person personal pronouns are very rarely if at all

used for linguistic anaphora. However, second-person and first-person plural pro-

nouns are unlike the self identity in that they do not occur often enough in the given

corpus to warrant their own sub-category.

4.2.2 Question Keywords

What is the use? What is the use of all these vain efforts? What is

the use of all these monotonous beginnings? What is the use of playing

so burdensome a part upon the social stage?

Questions were the first category of repetitions to be chosen with the frequency-

based selection method. We decided to limit this class of keywords to what is known

as ‘interrogative words ’. These words contain a sub-class commonly referred to as

the ‘five Ws ’: ‘who’, ‘’what’, ‘when’, why’, ’where’, plus ‘how’. The vast majority

of sentences beginning with interrogative words use the six keywords cited above.

We speculate that the reason for the focus on these particular interrogative words is

that the other words in the interrogative class have been deprecated from colloquial

English.

It is possible for question sentences to begin with keywords other than interrog-

ative words. However, we decided to limit the selection of keywords for the question

class to interrogative words. The reason for limiting our system to these keywords is

purely pragmatic. The set of interrogative words has a fixed bound, making detec-

tion a brisk task. Question sentences that fall outside this group however are more

difficult to classify. In order to minimise the classification error it was thus necessary
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to exclude non-interrogative words from the question keyword class.

Predictions

Given the medium from which our corpus was extracted we predict that a large por-

tion of the repetitions that contain question keywords and are intentional epanaphora

will be rhetorical questions. The justification for this prediction is that rhetorical

questions have the strongest incentive for repetition, whereas questions which focus

on information extraction tend to avoid redundancy.

Special Case: ‘When’

When shall my feet, on earth so tired that grew,

Tread all unfalteringly the street of gold?.

When shall I come where trees of healing bend

Their deathless boughs the living stream above?

When shall I listen to the music sweet

That thrills the glad air of the land I love?

After re-examining the results for the question keyword class we discovered that

one particular case was different from the rest, namely the keyword ’when’. As with

the self identity in the personal pronoun class, the particular corpus that we chose

influences the use of this word. Beyond its use in questions, ’when’ can also be used

for recounts of events. We decided that, just as was done with the self identity, it is

warranted to create a separate sub-category for this keyword.

90



4.2.3 Conjunctions

My mother actually took me shopping today! I got two skirts. And i got

two tops. And i got some shoes and jewelry.

Conjunctions are connector-type words that are used to bind adjacent phrases or

clauses. These conjunctions are not intended to be used at the beginning of sentences,

and any such application of these parts of speech is considered to be grammatically

incorrect. The fact is nevertheless that such sentences are encountered with unusually

high frequency in our corpus. The reason for this occurrence is that many of the

examined blog entries straddle the borderline between prose and spoken dialogue.

Recounts of events in particular tend to dominate this category.

Predictions

We don’t expect this category to produce many sentence-type intentional repetitions.

We believe that repetitions of conjunctions at the beginning of sentences may be good

indicators for phrase-type repetitions. Furthermore we will argue that this type of

repetition will not be able to match complete intentional repetitions because they

are not able to match the initial phrase.

While detecting conjunctions at the beginning of sentences may produce good

intentional repetitions, we argue that results matching these parameters should be

excluded from future parses due to them being phrase-type repetitions as opposed

to sentence-type repetitions.
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4.2.4 Articles

The CFD also asked for the removal of the movie Splash. The CFD

declared war with pickets and boycotts. (. . . ) The situation worsened

when the couple received death threats to their little daughter.

Articles are parts of speech used to define the type of reference made to the noun

they are attached to. Modern English has two sub-classes of articles: Definite and

indefinite. The former consists of the single word ‘the’, and is used to indicate that

the noun it is attached to is a specific one which the audience can identify. ‘A’

and ‘an’ form the indefinite article class, and are attached to nouns which are not

uniquely identifiable, such as general categories.

Predictions

Articles are extremely common at the beginning of sentences, and as a result they

are very likely to form repetitions throughout a paragraph. Their commonality also

dilutes their rhetorical strength. Due to this we predict that the repetitions generated

from them will be largely of an accidental nature.

4.2.5 Conditionals

If the frame is flexible enough to match your building, you will do well.

If the frame does not match, you may be worse off than if you had no

frame at all. If the frame is inflexible, you will see builders abandon the

frame and build their own.
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There are two types of condition that we will focus on: Branches and iterations.

Branches are sentences that begin with the words if and unless, whereas iterations

begin with the words while and unless . Branching keywords are somewhat frequent

at the beginning of sentences. Iteration keywords, in contrast, are relatively rare.

It can be argued that branches and iterations should be in separate categories.

However, examination of results shows that there is little impact in keeping these

two types of keywords under the same category.

Predictions

In colloquial English, repetitions beginning with branch conditionals are most com-

monly used in rhetorical figures related to contrast, such as antithesis. As a result of

their nature, contrast is the primary goal of these instances, not repetition. However,

in many cases there will be a duality in effect, where repetition takes either a sec-

ondary role, or where contrast and repetition are co-primary purposes. Furthermore

we predict that the particular choice of repeating the branching keyword during se-

quential sentences constitutes a wilful decision to emphasise the repetition aspect,

and that most of the found instances shall be classified as intentional epanaphora.

4.2.6 Demonstratives

This day I baptized Marie Joseph, recently born of the marriage of Fra-

nois Le Beau and Marie Josephine Bigra. This day I baptized Michel,

recently born of the marriage of Charles Buteau and Marie Marguerite

Gautier. This day I Supplied the rites of baptism to Jean, recently born
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of the marriage of Jean Brisar and Marie Angelique Clement.

Demonstratives are words which are used to distinguish between objects of entities

being referred to by a speaker. They are linked to deixis, the need for contextual

information to understand a word or phrase. In the English language there are two

types of demonstratives: proximal and distal, indicating the relative distance between

the entities and the speaker. The keywords that are used for the demonstrative filter

are this, that, these, and those.

4.2.7 Possessives

My times are in Thy hand; My God! My times are in Thy hand, What-

ever they may be. My times are in Thy hand; Why should I doubt or

fear?

In the English language there are two types of parts of speech indicating posses-

sion: Pronouns and adjectives. Possessive pronouns are seldom used at the beginning

of sentences in colloquial English. However, possessive adjectives occur frequently in

our corpus. There are seven possessive adjectives, derived from personal pronouns:

My, your, his, her, his, its, our, your (pl.), and their . They are used to ascribe

ownership of a noun to a subject. For the purpose of generating a keyword filter we

are not required to distinguish between the singular and plural forms of your .

Predictions

We estimate that repetitions starting with possessive adjectives will have a good

likelihood of being intentional epanaphora. The justification for this prediction is
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that the expression of ownership is attached to strong emotional expressions. Fur-

thermore, being parts of speech that are derived from personal pronouns we expect

that they will share a similar rhetorical influence. As a result we expect that the

distribution of epanaphora among possessive adjectives will mirror that of personal

pronouns.

4.3 Design and Performance

Performance design is an often-overlooked aspect of computational linguistics re-

search. The potential runtime improvements alone would warrant a second look at

attempting to implement a fast epanaphora detection algorithm, particularly if the

design allows the system to perform real-time epanaphora detection and classifica-

tion.

Revising the epanaphora detection algorithms also brings along benefits from a

theoretical perspective. By studying the performance of the detection process we

are able to garner a better understanding of the mechanics of repetitions within the

target corpus.

Finally, a redesigned algorithm will allow us to introduce options for more fine-

grained epanaphora detection and classification.

4.3.1 Epanaphora Revisited

The first task before engaging in a core redesign of the epanaphora detection process

is to re-examine what we know about both epanaphora and the detection process. A
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fresh look at both the composition of the rhetorical figures as well as the nature of

the epanaphora detection process will enable us to proceed in a structured manner

that is more suitable to gathering and laying out the information that is necessary

to improve the detection process’ performance.

Epanaphora Traits

Epanaphora is, by definition, a form of repetition. Furthermore, we know that it

has a strict left boundary, namely the beginning of a sentence. This boundary was

imposed by our own design as we chose to focus on repetitions across sentences as

opposed to repetitions across sentences, phrases, and lines of text. Knowing that our

repetition searches all begin at the same token within each sentence gives us the first

clue as to how we will improve our epanaphora detection algorithm.

Of all the attributes we identified for detecting and categorising repetitions, the

n-gram length is the strictest. The n-grams used have a fixed left boundary and a

right boundary limited at least by sentence length. We also know that comparing n-

grams is a sequential process and does not allow gaps. Those features of n-grams are

further clues for improving the epanaphora detection algorithm. The left boundary

for n-grams is the same as the left boundary for epanaphora. The right boundary

at sentence-length tells us that the longest n-gram including every sentence in set in

a way that S can be no longer than the shortest sentence Si where 1 ≤ i ≤ n and

Equation 4.4 applies.

∀(Sk) • k = {1, . . . , i− 1, i+ 1, . . . , n} ∧ lengthSk
≥ lengthSi

(4.4)
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Still, we can improve – shorten – the boundaries with the inclusion of the addi-

tional features of n-grams, namely their lack of gaps. A lack of gaps indicates that

the moment a token in any of the examined sentences stops matching the rest of the

patterns that sentence is no longer a candidate for longer n-gram matches. We can

use this knowledge as a constraint to discard sentences that do not match a minimum

n-gram length. Furthermore, the same method can be reused to create additional

boundaries for tuple and gap detection.

4.3.2 Comprehensive Epanaphora Detection

In Chapter 3 we built our epanaphora detection algorithms around the concept that

only a particular range of the included features determines the quality of an instance

of epanaphora. While we still hold this idea to be true, the number of combinations

available has increased drastically due to the introduction of additional classification

criteria. As a result it is no longer practical to target specific combinations. More

importantly, during the pilot we have shown that the initial speculation about the

role of certain detection and classification criteria may have been incorrect. It is

therefore reasonable to perform the first classification round on all ranges for each

of the classification criteria. Since the initial design of the epanaphora detection

algorithm was not built for this goal we will dedicate this section to generating a

new epanaphora detection algorithm that is both flexible and efficient.

As already mentioned, the previous goal of the epanaphora detection system was

to find repetitions matching an open range for each attribute. Our aim with the

new system it to implement mass-detection, whereby the goal is to find every unique
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and atomic variation. In other words we want to set the attribute range to always

be minimal for each result. While our current method can be adapted and re-used

by setting the condition for each attribute boundaries as narrow as possible (i.e.

setting the lower bound to the same value as the upper bound), using that approach

means increasing the running time by at least a polynomial degree, since the system

requires a full iteration over the entire corpus for each unique attribute combination.

Furthermore, since the new approach is intended to permanently use the same value

for the upper and lower bounds it is no longer necessary to distinguish between them.

Our primary goal in the following sections will be to avoid repeated full iterations,

as well as minimising the work that is needed to be performed when certain attributes

are not altered over different local iterations. The most direct approach to implement

the latter is to begin with a divide-and-conquer approach to reduce the range of

values which affect the polynomial complexity of attribute combinations. Once that

is done we shall introduce caching of intermediate results. Our task there will be

to identify those intermediate steps and select the ones that are most appropriate

for performance improvements terms of the information recorded, the possibility of

minimising memory usage, as well as the effect on run-time complexity due to their

introduction. In addition to the performance gains attained by the introduction of

caching methods, we will also gain a better understanding of how different types of

epanaphora share common traits.
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4.3.3 Improvements

Our first approach to finding information that can be cached will center around

a divide-and-conquer method. We will identify clusters of information that can

be examined independently. Even though this method alone will only produce a

constant-rate improvement, it is based on one of the most fundamental facts about

epanaphora detection.

Clustering

We know that the absolute left boundary of our target repetitions is the beginning

of each sentence examined. We furthermore know that in order for two or more

sentences to form a repetition pattern they need to share at least the very first word

of each sentence. By combining these two pieces of information we can take all the

sentences in a paragraph and sort them by their first word. We thus have split

the paragraph set of sentences S into subsets ζ1, . . . , ζn. Each subset is completely

independent of each other, and we are guaranteed that there is absolutely no chance

of a repeating pattern to occur across two different sets. Doing so would violate the

requirements set in the definition of epanaphora n-grams, where they must start at

the beginning of a sentence and they must not skip any word. An additional side

effect is that we can easily classify any resulting repetitions by keyword - instead

of performing keyword classification on each sentence in a paragraph we only need

to run the keyword classifier against each of the sentence sets. As a result we have

implemented our first real performance improvement by collapsing the execution of

a linear classifier to constant time.
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A more important side effect of the above approach is that we have not only

performed keyword classification, but that the clusters themselves are results already.

Each subset ζ1, . . . , ζn contains the most general result for each sentence-starting

word. We know that there cannot be any more sentences that might match that

word, because doing so would mean that the initial cluster subset division would not

complete at that point.

Algorithm 4.2 shows a possible implementation of the above design. It demon-

strates the simplicity of the clustering approach and showcases how it can be per-

formed in a single iteration over the collection of sentences. . Clustering begins on

Line 3 and ends on line 7. Furthermore the sequential nature of this approach means

that by the time the clustering ends each array in the clusters hash contains the

sentences in the same order in which they were encountered in the original sentence

array S.

Algorithm 4.2 Perform keyword-based clustering of sentence collection S

Require: S = S1, . . . , Sn

1: clusters := new Hash( key:String, value:[ ] )
2: i := 1
3: while i <= n do
4: kw := Si[1] {Retrieve the first word kw for sentence Si}
5: clusters[kw]← Si {Append Si to the hash array indexed by its first word}
6: i := i+ 1
7: end while
8: for each array Cli in clusters do
9: perform epanaphora detection on Cli
10: end for
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Attribute Recording

Having identified the general clusters of sentences Cl1 . . . CLn we can proceed to

record the attributes of the epanaphora variations present in each of them. In Section

4.3.3 we postulated that the identified clusters are themselves results. We will first

expand on that.

The cluster subdivision is performed using the first word of each sentence as the

clustering criterion. Clustering sentences by their first token guarantees the following:

Observation 4.3.1. All the sentences within one cluster share the same word at

their beginning.

In addition, we can assure that

Observation 4.3.2. No sentence in any other cluster contains the same first word.

Observation 4.3.1 is self-evident from the description of the clustering method.

Observation 4.3.2 follows from Observation 4.3.1. If there were to exist two clusters

Cla and Clb such that at least one sentence from Clb shares the same keyword as at

least one sentence from Cla, then by Observation 4.3.1 we know that all sentences

from Cla and Clb share the same initial word. Two separate clusters sharing the same

token is evidently a contradiction to the clustering design. Observation 4.3.2 must

therefore hold true. Knowing that every sentence within any cluster Cli gives us an

additional benefit, namely that we do not need to record the keyword attribute for

each individual sentence within said cluster. Because we ensured that all sentences

within Cli share the same first word and then used said word as the hash key for the

cluster collection in Algorithm 4.2 we can use said key to set the keyword attribute
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for all epanaphora variations which are based on the sentence cluster paired with

that key.

We can now extend the knowledge that each cluster contains sentences that begin

with an unique word. The basic rule for our epanaphora candidates is that each

sentence in an instance of an epanaphora candidate must begin with the same word

or words. By using Observation 4.3.1 we know that all sentences within any sentence

cluster Cl match this rule. In addition, the introduction of Observation 4.3.2 tells

us that the number of sentences in Cl is the maximum number of sentences (out of

those that were given as input to Algorithm 4.2) that contain the same initial word

as any of the sentences in Cl. Since the width of an epanaphora instance is equal to

the number of sentences that match its other criteria we can further determine that

the maximum with of any epanaphora instance for any keyword k is no greater than

the number of sentences in the cluster Clk for such keyword k. In addition we know

that only adjacent sentences within each sentence cluster Cli need to be compared.

Even if there were instances of epanaphora with n-gram length longer than one – In

other words, instances of epanaphora which are based on keyword matches beyond

each sentence’s first word – then those instances would still be no wider than the

number of sentences in Cli, or they would violate Observations 4.3.1 and 4.3.2.

At this stage it is known that no epanaphora instance for any keyword k has

greater width than the respective cluster Clk. We also know that there is no

epanaphora candidate with shorter n-gram length than one, and that the cluster

Clk has a guaranteed length of at least one. We further postulate that there is no

epanaphora candidate Ek such that Ek and Clk share the same initial sentence word
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and where the n-gram length of Ek is less than that of Clk.

Observation 4.3.3. For any sentence cluster Clk and key k there is no epanaphora

candidate Ek with an n-gram length shorter than that of Clk.

We know that Clk contains all sentences beginning with k. As a result, we know

that any epanaphora candidate Ek must be a product of sentences from Clk. What is

left to demonstrate is that there is no permutation of a subset of sentences from Clk

which produces shorter n-gram length than the entire set of sentences from Clk itself.

But first we shall revisit the n-gram length recording process itself. We only need to

measure the n-gram length for adjacent sentence pairs Si and Sj where j = i+ 1.

Hypothesis 4.3.4. For any candidate epanaphora instance Ek the n-gram length of

said candidate is equal to the shortest n-gram length among any two pairs of sentences

Si and Sj from Ek where j = i+ 1.

To back Hypothesis 4.3.4 we need to show two things: First, that only one sen-

tence is necessary to influence the n-gram length of the entire set of sentences in Ek

and second, that any two adjacent pairs involving said sentence are enough to set

the lower bound for this n-gram length.

Observation 4.3.5. For any epanaphora candidate E there is at least one sentence

which determines the lower bound for the n-gram length among the entire set of

sentences within E.

Observation 4.3.6. It is sufficient to observe adjacent pairs of sentences to find

one sentence which gives the lower bound n-gram for E.
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First we shall address Observation 4.3.5. We will begin with a comprehensive

search among all possible sentence pairs within the given epanaphora candidate E.

The base case is where all sentence pairs produce the same n-gram length. If that is

the case, then any one sentence pair will produce the shortest n-gram length, which

in this case is also the longest n-gram length.

The step is to introduce one sentence pair that has different n-gram length than

the rest. We begin by introducing one pair of sentences which produces a larger

n-gram length among the two sentences involved than any other pair. The remain-

der will continue to produce the shorter n-gram length among themselves, but also

when pairing any of the short-n-gram sentences against the long-n-gram sentences.

Following that, we proceed to replace each of the shorter n-gram sentences in E

with one that matches the longer n-grams. As before, any of the sentences involv-

ing the shorter pairs is sufficient to set the lower bound for the n-gram length of

E. We continue with this process until only one sentence remains which produces

shorter n-gram length against the rest of the sentences. This last sentence is now

the lower-bound determining sentence from Observation 4.3.5.

An important variation is when a sentence Sj is added to produce a longer n-

gram pair against the lower-bound determining sentence Si from Observation 4.3.5.

Even though these two sentences produce a pair with a larger n-gram length than

the lower bound, the original lower-bound sentence still produces the same bound

length against all the other sentences. In addition, sentence Sj of the new pair also

produces the same lower bound as Si.

Observation 4.3.7. Given any two sets of sentences ζa and ζb for which one sentence
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of ζa produces a shortest n-gram length against any sentence for ζb, then any other

sentence from ζa also produces the same shortest n-gram against any sentences from

ζb.

The property described in Observation 4.3.7 can be extended to any number of

sentence groups, and the order of the constituent sentences for each group has no

effect on the final result. These attributes are crucial for Observation 4.3.6. They

indicate that in order to determine the shortest n-gram length it is only necessary

to find any transition between ζa and ζb. in the worst-case scenario this transition is

where the sentence groups are not intertwined. In such case the only times where the

n-gram length among sentences differs is at the boundaries between sentence groups.

Still, whether the sentence groups overlap or not, a linear pairwise search will find

at least one transition that generates the shortest n-gram length for epanaphora

candidate E.

The last attribute that needs to be recorded for any sentence cluster Cl is the gap

between the sentences within the cluster. However Algorithm 4.2 does not record

the absolute position of the sentences within the input sentence set, only the relative

order among each of the sentences. Therefore the first thing that needs to be done

is to modify the algorithm to provide the necessary information.

The feature that Algorithm 4.3 introduces is the recording of each sentence posi-

tion alongside the sentence itself on line 5. The information on the sentence positions

can be used in conjunction with Algorithm 4.1 to calculate the gaps between adja-

cent sentences within each sentence cluster Cl. However, unlike the keyword, tuple

width, and n-gram length there is not a guaranteed fixed gap width across each sen-
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Algorithm 4.3 Perform keyword-based clustering of sentence collection S

Require: S = S1, . . . , Sn

1: clusters := new Hash( key:String, value:[ ] )
2: i := 1
3: while i <= n do
4: kw := Si[1]
5: clusters[kw]← [Si, i]
6: i := i+ 1
7: end while
8: for each array Cli in clusters do
9: perform epanaphora detection on Cli
10: end for

tence cluster. It is therefore necessary to record the necessary variations of tuple

gap for each sentence cluster. For the purpose of this study those variations are the

minimum, maximum, average, and median gap values.

Algorithm 4.4 implements the entire attribute recording process.

Recursion

Once all attributes of the base case have been recorded we proceed with finding

narrower results. The first step to narrowing the results is done by reducing each

sentence cluster Cii. The reduction is achieved by generating sentence subsets ζ i

out of every cluster Cli. One criteria for generating a subset is to cluster sentence

pairs that generate an n-gram pattern larger than the lower bound found for Cli.

In other words, the sentence subset from Observation 4.3.7 which is generating the

shortest n-gram pair is separated from the other sentences, and each subset is treated

individually as a disjoined cluster. Each of these subsets or disjoined clusters is a new

result with an n-gram length larger than its parent. The separation and re-treatment
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Algorithm 4.4 Perform attribute recording on a sentence cluster Cl

Require: Cl = [S1, j], . . . , [Sn, k]
1: ngram length := 0
2: tuple width := n
3: tuple gaps := [ ]
4: i := 1
5: while i < n do
6: Sa := Cl[i][0]
7: Sb := Cl[i+ 1][0] {Fetch the sentences}
8: pa := Cl[i][1]
9: pb := Cl[i+ 1][1] {Fetch the sentence positions}
10: ηa,b := n-gram length between Sa and Sb

11: if ngram length = 0 or ngram length > ηa,b then
12: ngram length := ηa,b
13: end if
14: tuple gaps← [pb − pa − 1]
15: i := i+ 1
16: end while
17: record attribute information for Cl
18: recurse on Cl
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process is repeated until no more sub-subsets are generated.

The step described above deals with n-gram variations. Tuple variations are

automatically taken care of because they are a simple by-product of the n-gram

variations above. It is possible to generate narrower tuple patterns by eliminating

sentences from the subsets and sub-subsets, but there is no practical goal in doing

so, since no significant information is added. The very same result can be achieved

in post-processing by performing a combination search.

A second variation process is possible, however, and that is gap variation. The

method to achieve gap variation is similar to n-gram variations. However, order

matters in this case, and we are interested in narrowing the gap between sentences,

not increasing it. What we will do thus is to find the longest gap or gaps within

each cluster Cli or cluster subset ζ i and split them along those gaps. If the number

of sentences within each subset is two or more then we can recursively apply the

attribute-recording process on that subset.

The gap variation process is performed in parallel to the n-gram recording method,

so duplicate results are possible. Dealing with these duplicates involves finding re-

sults where the sentence position numbers are the same as those of the current cluster.

However, it remains questionable whether inline duplicate removal provides any per-

formance improvement. The reason for such doubt is that the recursive processing

of larger n-gram length and shorter gap width bounds does not produce an ordered

set of results. What this means for inline duplicate removal is that it is necessary

to perform a linear search in order to determine whether the current element is a

duplicate of a previous result. The complexity of adding a linear search may be offset
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Algorithm 4.5 Enter n-gram recursion on a sentence cluster Cl

Require: Cl = [S1, j], . . . , [Sn, k]
Require: ηmin = shortest n-gram in Cl
1: Clrecursion := [ ]
2: Clremainder := [ ]
3: i := 1
4: Clrecursion ← [Cl[1][0], Cl[1][1]]
5: while i < n do
6: Sa := Cl[i][0]
7: pa := Cl[i][1]
8: j := i+ 1
9: while j ≤ n do
10: Sb := Cl[j][0]
11: pb := Cl[j][1]
12: ηa,b := n-gram length between Sa and Sb

13: if ηa,b = ηmin then
14: Clremainder ← [Sb, pb]
15: j = j + 1
16: else
17: Clrecursion ← [Sb, pb]
18: break
19: end if
20: end while
21: i := j
22: end while
23: record attribute information for Cl
24: run Algorithm 4.4 on Clrecursion
25: run Algorithms 4.5 and 4.6 on Clremainder
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Algorithm 4.6 Enter gap recursion on a sentence cluster Cl

Require: Cl = [S1, j], . . . , [Sn, k]
Require: tuple gaps = [g1], . . . , [gn − 1]
1: Clrecursion := [ ]
2: Clremainder := [ ]
3: gapsremainder := [ ]
4: gmax := largest gap of tuple gaps
5: Clrecursion ← [Cl[1][0], Cl[1][1]]
6: i := 2
7: while i ≤ n do
8: Sa := Cl[i][0]
9: pa := Cl[i][1]
10: if tuple gaps[i− 1] = gmax then
11: j := i
12: while j ≤ n do
13: Clremainder ← [Cl[j][0], Cl[j][1]]
14: gapsremainder ← tuple gaps[j − 1]
15: end while
16: break
17: else
18: Clrecursion ← [Sa, pa]
19: end if
20: i = i+ 1
21: end while
22: record attribute information for Cl
23: run Algorithm 4.4 on Clrecursion
24: run Algorithms 4.5 and 4.6 on Clremainder
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by utilising a hash instead of an array to store the results, but it is unknown how

often duplicate results are generated, and how much of an improvement the inline

duplicate removal is versus a post-processing approach.
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Chapter 5

Epanaphora Classification

5.1 Corpus Generation and Classifier Training

In this section we will cover two aspects of epanaphora classification. The first aspect

is the generation of corpora for training, testing, and verification. The other facet

is the use of those corpora to select, train, and evaluate candidate algorithms for

epanaphora classification.

5.1.1 Annotation

The purpose of annotation is to create a baseline for training the epanaphora classi-

fiers. This baseline is defined by creating a collection of instances of epanaphora that

are representative of the ‘intentional’ set of epanaphora. The result of this baseline

creation is that the goal of the first generation of automated epanaphora classifiers

is to detect all epanaphora-type repetitions, excluding the ones considered to be ac-

112



cidental. To put this in a different perspective, we aim to find the types of repetition

which generate audience interest towards the content.

Input

The input of the classifier training tool is the same as the output of the epanaphora

detection algorithm. In this case that consists of a collection of documents in XML

format. Each entry within the documents corresponds to the potential instances of

epanaphora encountered during the detection process. The recorded information for

each entry contains the paragraph in which the repetition was encountered as an or-

dered collection of sentences. The sentences which were identified as the constituents

of the detected epanaphora are tagged by setting an element attribute. In addition

to the paragraph we also recorded the attributes of each instance of epanaphora.

These attributes are not used for the training process, but will be stored for later

use by the classifier algorithms.

Output

In terms of format, the output follows the same structure as the input. The primary

difference – in fact, the only difference – is that the output is sorted into separate

document sets based on the annotations assigned to each paragraph. While this

method fractures the data sets, it was decided to favour it over the addition of new

XML elements and attributes. The reasons for this decision were ease of implemen-

tation and, more importantly, maintaining the homogeneity of the data structures.

By using one format and sticking to it we can guarantee that the inputs at different
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stages of the classification process are interchangeable, enabling us for example to

perform recursive annotation and classification. A further benefit to the approach

described above is that by maintaining the cohesion between input and output the

same annotation tool can be used to judge the quality of automated epanaphora

classifiers.

Annotation

Under ideal circumstances, the goal of the annotation process is to separate the

input data into two sets: Instances of epanaphora that are relevant to the goals of

the annotator, and instances which are not. The instances which are relevant to the

annotator can be tuned by changing the criteria of relevance that are given to the

person. This annotation process is designed to minimise annotator error by reducing

the number of choices given.

Interface

Figure 5.1: General view of the annotation tool interface

The design of the interface for the annotation tool follows minimalistic design
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patterns. It is composed of three major sections, which are shown in Figure 5.1. The

first section is composed of area A. It is a panel that contains the general commands

used by annotators: Opening input files, saving output documents, viewing annota-

tion statistics for the current output, and closing the application. The second section

is the primary annotation interface. Area B displays the instance of epanaphora to

be annotated, and area C is the interface for the annotation selections described

earlier in this section. The last element of the interface is area D, which is the review

panel. It contains all the instances of epanaphora that have already been annotated

for the current input file, displaying them in reverse order (newest at the top). The

reverse order can be seen in the example Figure 5.2. In that example, the order of

annotation was ‘matches criteria’, ‘does not match criteria’, and ‘garbage input’.

Figure 5.2 also displays further properties of the annotation tool. First of all,

the review panel lets annotators compare their current annotations to previous ones.

Being able to refer to their previous selections can be used by annotators to maintain

consistency throughout the annotation process by generating a reference catalog of

past annotations. The second property is that each element in the review panel

is composed of two parts: The content display (area E), and the review controls

(area F). The content display follows the same format as area B from Figure 5.1.

In particular, it demonstrates that the application is capable of highlighting the

repeating elements of an instance of epanaphora within each paragraph context. The

highlights aid the performance of the annotators by creating a visual focus without

the need to discard extraneous content. The second component of the elements in the

review panel is used by annotators to alter the annotation choices for an element in
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Figure 5.2: Sample of the annotation tool review interface

Figure 5.3: Annotation review controls
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the review panel. It provides access to the review controls shown in Figure 5.3. The

primary goal of providing annotators with this option is to enable them to perform

revision of their annotation choices after erroneous input. Such erroneous input is

possible for example if an input document favours one of the classification choices.

The repetitive nature of the annotation process is likely to lead to an attempt at faster

element processing. There is a threshold however at which the repeated selection of

the same choice becomes a semi-automatic, mechanical movement. Since the act

of reading and comprehending each element of the input data is not instantaneous

it becomes possible for this mechanical movement to trigger before or at the same

time as a decision regarding the classification choice is made, thus resulting in input

error. We decided however that the review controls should not be too accessible

in order to prevent accidental alterations to the annotation choices. As a result

we separated the review controls from the primary annotation tool interface and

introduced a confirmation dialog. The confirmation dialog controls whether the

changes are propagated back to the main interface, or whether they are discarded.

The last property that Figure 5.2 demonstrates is the annotation statistics review.

It was introduced to provide an overview of the ratio of instances of epanaphora that

match annotation criteria to the ones that do not.

Annotators

To perform the initial training of the epanaphora classifiers we hired annotators

with expert knowledge of rhetoric. Each annotator is given a walkthrough to the

annotation tool interface and a document describing the criteria for categorising
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instances of epanaphora, in human terms. Full disclosure was given as to the purpose

of the annotation process.

Annotation Procedure

As was mentioned earlier in this section, the tasks given to the annotators are aimed

at detecting sets of intentional epanaphora. However, we are also interested in mea-

suring the quality of the datasets used to train the classification algorithms. It is

therefore our intent to shape the annotation process in such a manner that will allow

us to generate a fair balance between generating sets for the testing of inter-annotator

agreement and the production of a dataset of sufficiently large proportions. The ur-

gency of such a balance is compounded by the limited resources available during the

annotation phase. In the end it was decided that the annotators would receive four

sets of input data each. One of those four datasets is shared among all annotators,

meaning that said set will be annotated independently by each annotator. The other

three datasets are unique to each annotator. The shared dataset is reserved for mea-

suring inter-annotator agreement. This reservation was done to prevent unbalancing

the training process of the automatic classifiers. If the shared dataset had been in-

cluded with the rest as input for the trainers then it could have had an unbalancing

effect on the classification algorithms. This imbalance becomes be particularly evi-

dent as more annotators are involved. We cannot just include every revision of the

annotated sets, since that would mean that the shared dataset is weighed higher than

the rest. Conversely we cannot generate a single set representative of an ‘average’

annotator, because only entries that are unanimously classified as matching one of
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the two classification categories can be used.

Annotator Agreement

Since the reading speed and annotation process varied from one annotator to another,

not all of them produced outputs of equivalent size. The annotators did, however,

proceed through the instances of epanaphora in the input dataset in a sequential

order, therefore maximising the number of instances of epanaphora that were handled

by all annotators.

Of the shared set of epanaphora, a total of 156 unique instances of epanaphora

were annotated by all annotators. Out of those 156, only two were marked by all

annotators as being true intentional epanaphora. A further 132 were marked by none

of the annotators as belonging to the intentional epanaphora output set, and the re-

maining 22 were marked with varying degrees as belonging to either the intentional

epanaphora or the accidental epanaphora groups. Based on these numbers, the anno-

tators’ results agree across the board 85.897 percent of the time. More importantly,

only 1.282 percent of the recorded instances of epanaphora are unanimously marked

are being intentional, and 15.385 percent of the instances of recorded repetitions are

considered by at least one person as being intentional. All these numbers are shown

in Figure 5.4.

Of all the values in Figure 5.4, three are of higher interest to us than the rest:

The 85.897 percent of unanimously annotated epanaphora, the 15.385 percent of

intentional epanaphora, and the 1.282 percent of unanimously annotated intentional

epanaphora. The first value gives us a rough idea for the base value to aim towards
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Description Instances Percent
Intentional (agreed) 2 1.282
Unintentional (agreed) 132 84.615
Intentional (debated) 22 14.103
Agreed 134 85.897
Intentional (any) 24 15.385
Total 156 100

Figure 5.4: Statistics on inter-annotator agreement

when performing automated epanaphora classification. The second value gives us

an estimate for the ratio of intentional to accidental epanaphora in the corpus, and

the third value shows just how sparse the amount of unambiguously intentional

epanaphora can be.

Annotation Attribute Analysis

Having looked at annotator agreement, we can now focus our attention on analysing

the attributes of the instances of epanaphora used to train the classifiers. Our pri-

mary goal in this section is to look at the distribution values for each attribute.

The first attribute we shall examine is n-grams. Figure 5.5 shows the comparative

distribution of annotated instances of epanaphora that match the criteria for inten-

tional epanaphora and those that do not match those criteria. The values represent

the median n-gram length for each annotated paragraph, and have been normalised

to be independently representative of the distribution for the matching and non-

matching sets, respectively. In other words the given values are comparative to the

distribution for an equal-size sample of each of the annotation sets. The first thing

that can be observed is that the distribution of entries which do not match the cri-
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Figure 5.5: n-Gram statistics

Figure 5.6: Distribution of epanaphora in input corpus by n-gram length
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teria for intentional epanaphora mirror the distribution of epanaphora in the input

corpus in Figure 5.6. The values from this figure were previously used to obtain the

(logarithmic) distribution for Figure 3.9 in Section 3.2.4, and are related in the same

fashion as the values for Figure 3.6 and Figure 3.7 in Section 3.2.3.

More interesting than the distribution of accidental epanaphora is the distribution

of intentional epanaphora. Figure 5.5 shows a clear bulge in the distribution for 3-

grams. The protuberance coincides with the trends described in Section 3.2.3 where

it was discovered that instances intentional epanaphora tend to favour the lower

end of the n-gram spectrum. We can therefore state with good confidence that the

predictions laid out then have been corroborated in Figure 5.5. A second result from

the distribution of intentional epanaphora in Figure 5.5 is the y-values where the

n-gram length η equals to one. For the described case our distribution graph the

relative value of intentional epanaphora is higher than for longer n-grams. However,

despite being the largest value for that particular set it is evident that the instances

of epanaphora with an n-gram length of one are overwhelmingly accidental.

The second primary attribute described in Chapter 3 is the tuple width. Figure

5.7 shows the comparative distributions for tuple widths in the annotated sets of

epanaphora. As was the case with n-gram length, the tuple width for accidental

epanaphora mirrors the distribution of the input corpus, seen in Figure 5.8. Fur-

thermore the distribution of intentional epanaphora in Figure 5.7 rather faithfully

mirrors that of accidental epanaphora, save for a prominent spike for epanaphora of

width four. Most interesting though is the fact that the curve for the distribution of

intentional epanaphora goes flat for tuples of width six and larger, as opposed to the
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Figure 5.7: Tuple statistics

Figure 5.8: Distribution of epanaphora in input corpus by tuple width
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distribution curve for accidental repetitions which continues to decay. Unfortunately

our data at this stage of our research is too sparse to determine whether the flattening

is a general trend or just an anomaly for this particular dataset. While it is tempting

to discard it as an anomaly we have encountered clear counter-examples. A possible

justification for categorising it as a trend is that as repetitions become wider they also

cover a larger proportion of their respective paragraphs. While narrow repetitions

are easy to shrug off as random, wider repetitions become more noticeable to the

author and audience, and as a result they also become more likely to be intentional.

The increased likelihood of intentionality as the width increases may be sufficient to

counter the natural logarithmic decay in frequency.

Figure 5.9: Gap statistics

Having examined the two primary classification attributes – n-gram length and
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tuple width – we can now shift our focus to the secondary attributes. We have just

concluded covering tuple width, therefore it is reasonable to continue with a related

attribute, namely the gap width between tuples. Figure 5.9 shows the comparative

distributions of gaps for intentional and accidental epanaphora respectively. Unfor-

tunately we do not have a baseline value to compare against. However, based on the

trends for n-gram length and tuple width we can assume with reasonable safety that

the distribution of gaps for accidental epanaphora closely mirrors that of the input

corpus.

The most prominent revelation from Figure 5.9 is the abrupt decline in frequency

of intentional epanaphora as the size of the gaps increases. Based on the trend

observed in this graph, gaps of size two or larger are very strong indicators of the

repetition being accidental.

Keywords are the other secondary attribute to be examined. Unlike the previous

analyses of attribute distribution, keywords have no specific relation to one another.

It is thus that we will switch our distribution graph for this attribute from a line

graph to a bar graph, as shown in Figure 5.10. The bars are to be read pairwise,

with each pair corresponding to a different keyword. Of all the encountered keyword

pairs, four stand out in that they show a marked cleft in the ratio of intentional to

accidental epanaphora. These pairs are articles, self identity, question keywords, and

other . The cleft for the articles keyword category is unsurprising, since we already

predicted in Section 4.2.4 that repetitions beginning with articles would be largely

accidental in nature, in particular if they are paired with an n-gram attribute of

short length. What was surprising, however, is the low ratio of keyword repetitions
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Figure 5.10: Keyword statistics
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within the annotated corpus. This low ratio is encouraging, however, as it indicates

that this category is less likely to produce a grand number of accidental epanaphora

to sift through.

The results for the self identity keyword category is quite interesting. As pre-

dicted in Section 4.2.1 the first person singular personal pronoun occurs with very

high frequency within the input corpus. We did not, however, expect the ratio of

accidental to intentional epanaphora to favour the accidental side of the balance.

Identity of self is a very strong vehicle for the expression of feelings and desires,

which were expected to be one of the larger foundations for intentional epanaphora.

The results seen in Figure 5.10 lay a degree of uncertainty over that assumption.

One potential explanation is that the input corpus sports an imbalance in the use of

self identity. It is possible that a very high incidence of recounts of personal events

is responsible for tipping the scales towards the side of accidental epanaphora.

The third keyword category, question keywords, promises a brilliant insight into

the use of repeating questions. Despite being a relatively small category in itself,

when comparing the incidence of question keywords related to intentional epanaphora

to that of question keywords related to accidental epanaphora it is clear that inten-

tional epanaphora are favoured prominently. This favouritism is very likely due to

the strong use of repetition in rhetorical questions. Further speculation is not pos-

sible due to the sparsity of the input corpus, but if Figure 5.10 is any indicator of

future trends then question keywords are certainly something to look out for in future

iterations of epanaphora detection and classification.

The last keyword category, other, is not so much an intentional category as a con-
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tainer for instances of epanaphora that do not match any of the pre-set categories

of keywords. What makes it interesting is that the ratio of intentional epanaphora

marked as ‘other’ is significantly large compared to the same ratio for accidental

epanaphora. Two explanations are possible for the prominence of this ‘other’ clus-

ter. The simplest answer is that the other defined categories are insufficient for

proper keyword categorisation, and that further sub-sectioning is required. The

other explanation is that the defined categories are very good at identifying acciden-

tal epanaphora and act as a filter to discard unwanted repetitions.

Figure 5.11: Epanaphora sentence length statistics

Despite having already defined and set the primary and secondary attributes,

during the process of evaluating the annotated corpus we got interested in one ad-

ditional variation, namely the length of the sentences (in words per sentence) that
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were involved in intentional epanaphora. Figure 5.11 shows the plot of the values for

this attribute, and it shows a very interesting trend. Accidental epanaphora (and, in

turn, the input corpus) show a small but quick spike in frequency of repetitions as

the sentence length increases, followed by a slow and steady decline for even longer

sentences. On the other hand the data plot for intentional epanaphora displays a

large spike early on, followed by a very prominent decay. The shape of the curve for

intentional epanaphora in Figure 5.11 hints that it is crucial for the repetitions in in-

tentional epanaphora to follow each other in quick succession within the source text.

The results from Figure 5.11, together with those from Figure 5.9, can be seen as a

corroboration for the idea in Section 4.1.1 that memory span plays an important role

in the perceived intentional nature of epanaphora. Given the apparent importance

of memory span, its correlation with the perceived intentional nature of epanaphora

bears formalising:

Hypothesis 5.1.1. Memory span has a key influence in the perceived intentional

nature of epanaphora.

If memory span can be used to judge the intentional nature of epanaphora, then

we surmise that it is likely that this relation also works the other way. We can further

extend that conjecture by tying back it into one of the premises of this thesis:

Hypothesis 5.1.2. The detection and classification of intentional epanaphora be

used to measure the saliency of a section of text.
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5.1.2 Classifiers

The tools that was used to train and run the epanaphora classifiers is Weka [76][63][148].

Weka is a Java-based classification tool built at the University of Waikato and re-

leased under the GNU General Public License. It provides a common interface to a

large variety of machine learning and data mining algorithms. In addition to allow-

ing users to train and test their classifiers, Weka is also capable of generating vital

graphs and statistics necessary to evaluate those classifiers.

Classifier Types

Before proceeding to the training of the epanaphora classifiers it is advised to look

at the kinds of classifiers available and determine which ones are most suitable to the

task at hand. It is at this point that the additional effort from Section 4.3 pays off. In

said section we had studied the properties of the various attributes which we intended

to use to detect and classify epanaphora. By learning how these attributes interact

with one another we can make an educated guess as to which kind of classification

algorithm would be most appropriate.

In order to maintain input and output consistency we shall focus our study of

classification algorithms on those which are available within Weka. For the first

classification effort we are not so much interested in getting the best results as we are

in testing a wide variety of classification methods. As a result we will be examining

the following algorithms in this section:

• Decision trees
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• Support vector machines (SVMs)

• Logistic regression

• Bayesian classification

• Adaptive boosting (ADABoost)

In the decision tree learning method the approach to classification is to create one

node for each of the classification attributes and to form a branch from that node

for each of the possible values of said attribute. This method allows researchers to

perform a comprehensive search through all the variations of the input dataset. Such

an approach is useful for sets of relatively small variation. This, however, is not the

case in our study. In Section 5.1.1 we showed that each attribute can significantly

vary in value. Furthermore we do not have strict upper bounds for any of the numeric

attributes. While this is not a terminal problem at run-time, it does make it more

difficult to predict the classification outcome for an unknown input set.

Support vector machines are a method of pattern recognition. The premise is

that this algorithm is capable of sorting input into one of two categories. This is

achieved by mapping each element of the training input as a point in space in such

a manner that a ‘hyperplane’ (or set thereof) can be drawn through said space to

separate the points belonging to each individual category. The best classification is

achieved by finding the set of hyperplanes which maximise the separation between the

two output categories, that is, the hyperplanes which aim for the maximum distance

to the nearest datapoints. For the purpose of our study the binary classification

is ideal, since it matches the method used by the annotators during their phase of
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the classification procedure. However, it is not clear whether the list of attributes

for classification is appropriate for classification by support vector machines. Given

that intentional epanaphora can cover a variety of value ranges for each attribute it

is possible that the datapoints do not distribute well in the classification space, and

that as a result there is no hyperplane with sufficiently large distance to the nearest

datapoints to compensate for generalisation errors.

Logistic regression is a probabilistic model for classification. Prediction can be

performed on numeric values as well as literals, and is achieved by plotting the data

to a logit function logistic curve. Because of that it is a good fit for our research,

since the function can map input values z of any magnitude to an output f(z) value

between zero and one. The largest disadvantage in utilising logistic regression as

an epanaphora classifier is that with small or medium training sets the model has a

tendency to overestimate effect ratios. This overestimation falls within the acceptable

error ranges for a single execution, but becomes more prominent in multi-part studies.

As with logistic regression, Bayesian classifiers are probability-based. The major

change compared to the previous methods – decision trees, support vector machines,

and logistic regression – is that in classification using Bayesian methods each at-

tribute is considered to contribute independently to the probability of the classifica-

tion. In this pilot study we focused specifically on using a naive Bayes classifier. This

type of model is well-suited to supervised learning, even when dealing with relatively

small training corpora. This gives it an advantage over the other probabilistic clas-

sifier used, logistic regression. Classification is also performed based on maximum

likelihood on a per-variable basis, making the algorithm simple and robust since it is
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not necessary to determine the entire covariance matrix. Epanaphora classification

using a naive Bayes algorithm is well-suited to the setup of our study since we have

explicitly recorded any direct relations between the attributes used for the classifi-

cation of instances of epanaphora. Furthermore the use of a naive Bayes classifier

addresses the issue previously mentioned during the discussion of support vector ma-

chine classification, namely the distribution of intentional instances of epanaphora

across a large range of attribute values. By performing classification as the sum of

independent probabilities we side-step that issue entirely.

Classifier Training Data

As mentioned in Section 5.1.1, the annotated data has been split into two sets:

One for measuring annotator agreement, and one for training of the classification

algorithms. However a training dataset alone is not sufficient. After training, the

accuracy of the classification algorithm needs to be measured. There are two possible

approaches to generating a test set for the classification algorithms. The first option

is to split the training dataset in two sections - One for training, and another one for

testing. The second option is to use the dataset to measure annotator agreement.

The latter seems counter-intuitive, but the idea of using this dataset is actually

not that far-fetched. Each epanaphora classification algorithm can be construed as

being an additional annotator, and in that light it is reasonable to be using the given

dataset for testing.

Still, one more aspect of the training corpus has to be addressed, and that is

the uneven ratio of intentional to accidental epanaphora in the training corpus. In
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Section 5.1.1 we discovered that the number of accidental epanaphora is between one

or two orders of magnitude greater than that of intentional epanaphora. Depending

on the nature of the data and the classification schemas this may not be an issue.

However there is a possibility that the given imbalance in numbers may bias the clas-

sification algorithms towards tagging a higher number of epanaphora as accidental

than they would otherwise. This asymmetry can have a particularly strong effect

on non-stochastic classification algorithms which are more affected by overlapping

values for intentional and accidental epanaphora. In order to address this possible

condition we will run the classifier training with two separate sets of input – One

with the unadulterated training data, and and one input in which the training corpus

is balanced in such a way that there is an equal number intentional and accidental

instances of epanaphora.

5.1.3 Pilot Test

Having finalised the selection of the classifier algorithms and chosen the datasets for

training and testing said algorithms we can move forward with the training proce-

dure. We will first study the classification results based on the original annotated

training set. Each result table consists of the following ratios: True Positive (TP),

False Positive (FP), Precision, Recall, F-measure, and Receiver Operating Charac-

teristic (ROC) area values for each individual classification class and for the weighed

average.

In order to maintain consistency we will proceed through the classification schemas

in the order listed in Section 5.1.2. For the decision tree classifier we chose the J48
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algorithm, and for the support vector machine classifier we used the libSVM library.

Training Results

Figure 5.12: J48 decision tree

We will first examine the results for the classifiers trained with the unedited input

corpus. Figure 5.12 shows the decision tree that was built from the training corpus.

As we proceed down the tree we can see right away that this training corpus is not

compatible with the algorithm. The classification values for average n-gram length,
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median tuple gap, and tuple width are ignored by the algorithm. The reason for this

is that these attributes have no clear split value. Plotting the ROC curve (Figure

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0 0 0 0 0 0.606 yes
1 1 0.886 1 0.94 0.606 no

0.886 0.886 0.785 0.886 0.833 0.606 avg

Figure 5.13: J48 decision tree accuracy by class

Figure 5.14: Receiver operating characteristic (ROC) curve for the J48 decision tree

5.14) shows a graph that has nearly no predictive value. The effect of this can be seen

on the accuracy table on Figure 5.13. The first row shows the values for epanaphora

classified as intentional, the second row for epanaphora classified as accidental, and

the third row shows the weighed average. We can see from the TP and FP rates

that not a single instance of epanaphora has been rated as intentional. This is not

well-reflected in the precision and recall measures due to inherent imbalance in the

ratio of intentional to accidental epanaphora in the corpus, but can be seen clearly

in the low value of the retriever operating characteristic (ROC) area.
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TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0 0 0 0 0 0.5 yes
1 1 0.886 1 0.94 0.5 no

0.886 0.886 0.785 0.886 0.833 0.5 avg

Figure 5.15: LibSVM support vector machine accuracy by class

Classification via support vector machine did not perform any better. In fact this

classifier was completely unable to perform any significant prediction, as can be seen

from Figure 5.15.

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0 0 0 0 0 0.734 yes
1 1 0.886 1 0.94 0.734 no

0.886 0.886 0.785 0.886 0.833 0.734 avg

Figure 5.16: Logistic regression accuracy by class

Figure 5.17: Receiver operating characteristic (ROC) curve for logistic regression

Figure 5.16 shows the accuracy by class for the logistic regression classifier. While

the true positive and false positive values for logistic regression do not seem to indi-

cate that this classification algorithm will perform any better than its predecessors,
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the receiver operating characteristic tells a different story. In Figure 5.17 we can

see that despite having a zero positive result rate the curve is beginning to show an

inclination towards better classification.

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.111 0.014 0.5 0.111 0.182 0.759 yes
0.986 0.889 0.896 0.986 0.939 0.752 no
0.886 0.789 0.851 0.886 0.853 0.753 avg

Figure 5.18: Naive Bayes accuracy by class

Figure 5.19: Receiver operating characteristic (ROC) curve for Bayesian classification

Of all the classification algorithms trained during the pilot, the naive Bayesian

classifier was the only one to categorise some instances of epanaphora as intentional

(Figure 5.18). This is a major breakthrough in that it promises that the naive

Bayes classification algorithm is capable of more fine-grained distinction between

intentional and accidental epanaphora using the given attributes. This is backed by

the ROC curve (Figure 5.19), which shows greater convexity than the previous best

one for logistic regression.
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TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.111 0 1 0.111 0.2 0.763 yes

1 0.899 0.897 1 0.946 0.763 no
0.889 0.788 0.909 0.899 0.861 0.763 avg

Figure 5.20: Naive Bayes accuracy by class (including the sentence length attribute)

Figure 5.21: Receiver operating characteristic (ROC) curve for Bayesian classification
(including the sentence length attribute)
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In Section 5.1.1 we had observed the apparent effect of the sentence length on the

intentionality of epanaphora. This attribute of the annotated epanaphora has not

been included in the results studied until now. However, given the possibility that it

may have a positive effect on the quality of epanaphora classification we felt that it

is necessary to introduce an additional round in this study to examine the effect that

this attribute may have on the classification algorithms. Doing so showed no change

for the decision tree, support vector machine, and logistic regression classifiers in

their ability to detect intentional instances of epanaphora. The naive Bayes classifier,

however, performed again with better results than the rest of the algorithms. The

results of that classifier execution can be seen in Table 5.20. We can see that the

algorithm was able to maintain the true positive rate for intentional epanaphora while

eliminating the false positive rate for the same class. This translates into a perfect

precision measure while maintaining the recall rate, which improves the resulting

f-measure. Finally the receiver operating characteristic area sees further gain. The

ROC curve shows greater concavity and a smoother curve (Figure 5.21). All of the

above numbers appear to support Hypothesis 5.1.2 in that a it appears to show

the existence of a certain range for the sentence length which sports an increased

incidence in intentional epanaphora. However, since the naive Bayes classifier is the

one most sensitive to the given attributes it is the only one that has been able to

take advantage of the new sentence length information.

Having evaluated the success of training the classification algorithms with the

unadulterated training corpus we will now proceed to using the balanced training

dataset. The balance is achieved by randomly eliminating entries from the larger of
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the two annotation categories (accidental epanaphora) until the number of instances

of epanaphora encountered in it equals to the lesser of the annotation categories,

intentional epanaphora. This significantly reduces the size of the training corpus.

Depending on the frequency of annotation of instances of epanaphora as intentional

the size of the corpus is reduced by one or two orders of magnitude. As already

observed in Section 5.1.2, some of the classification algorithms are more error-prone

with smaller training corpora than others. Finally, since we have determined that

the length of the constituent sentences of an instance of epanaphora have a mostly

positive influence on the classification of unknown epanaphora we have decided to

include those values in this classifier training round.

The decision tree classifier is finally capable of generating a distinction between

the intentional and accidental instances of epanaphora based on the provided at-

tributes. The tree constructed by the J48 algorithm can be seen in Figure 5.24.

From the view we can observe that the input corpus sports a much clearer separa-

tion between the values for intentional and accidental epanaphora, as evidenced by

the branching for maximum n-gram length, average tuple gap, and median and av-

erage sentence lengths. Surprisingly the tuple width did not make it into the pruned

decision tree. We speculate that this is because this attribute of epanaphora is not

singly characteristic for either intentional nor accidental epanaphora. Figure 5.22

shows a clear improvement for the decision tree classifier with the balanced training

corpus. However it is evident that this balanced training corpus is not sufficient to

place the decision tree algorithms above even the naive Bayes classifier trained with

the unadulterated corpus with the sentence length attribute. While the decision tree
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TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.222 0.1 0.222 0.222 0.222 0.682 yes
0.9 0.778 0.9 0.9 0.9 0.682 no

0.823 0.701 0.823 0.823 0.823 0.682 avg

Figure 5.22: Decision tree accuracy by class (balanced corpus, including the sentence
length attribute)

Figure 5.23: Receiver operating characteristic (ROC) curve for decision trees (bal-
anced corpus, including the sentence length attribute)
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Figure 5.24: Pruned J48 decision tree (balanced corpus, including the sentence length
attribute)

classifier is finally capable of annotating intentional epanaphora and doing so with

relative success – as shown by the larger true positive rate and f-measure – the area

below the ROC plot is still rather small. Looking at the curve itself shows why: In

Figure 5.23 we see a slightly convex curve that is still struggling to move away from

the diagonal.

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.222 0.186 0.133 0.222 0.167 0.518 yes
0.814 0.778 0.891 0.814 0.851 0.518 no
0.747 0.71 0.804 0.747 0.773 0.518 avg

Figure 5.25: Support vector machine accuracy by class (balanced corpus, including
the sentence length attribute)

While the decision tree algorithm has shown some visible improvement, the sup-

port vector machine classifier has remained the worst under-performer. A higher

false positive rate, lower precision and f-measure in Figure 5.25, and a very shal-
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low ROC curve that barely deviates from the diagonal are yet more indicators that

support vector machines may not be appropriate for classification of intentional and

accidental epanaphora.

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.444 0.186 0.235 0.444 0.308 0.648 yes
0.814 0.556 0.919 0.814 0.864 0.648 no
0.772 0.513 0.841 0.772 0.8 0.648 avg

Figure 5.26: Logistic regression accuracy by class (balanced corpus, including the
sentence length attribute)

Figure 5.27: Receiver operating characteristic (ROC) curve for logistic regression
classification (balanced corpus, including the sentence length attribute)

Like the J48 decision tree classifier, the logistic regression algorithm shows visi-

ble improvement. In fact Figure 5.26 indicates that with this algorithm we have the

greatest true positive rate yet and a false positive rate that falls within the accept-

able error range. Precision is still relatively low, but high recall (and as a result,

f-measure) promise to make this algorithm a good candidate for epanaphora classifi-

cation. However, the ROC plot in Figure 5.27 tells a different story, with a curvature
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that is less convex (though better-staged) than that of Figure 5.17.

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.333 0.143 0.231 0.333 0.273 0.798 yes
0.857 0.667 0.909 0.857 0.882 0.798 no
0.797 0.607 0.832 0.797 0.813 0.798 avg

Figure 5.28: Naive Bayes accuracy by class (balanced corpus, including the sentence
length attribute)

Figure 5.29: Receiver operating characteristic (ROC) curve for Bayesian classification
(balanced corpus, including the sentence length attribute)

Finally we have the results from training the naive Bayes classifier with the bal-

anced corpus including sentence lengths in Figure 5.28. The true positive rate sees a

decline in comparison to the logistic regression algorithm, but it is greater than the

previous results for the Bayesian classifier and it also sports a lower false positive

rate, comparable precision, and the second best f-measure. The real treasure however

is the the area under the ROC curve, with the highest ratio of all variations tested

so far. Looking at the shape of the curve in Figure 5.29 we can immediately see why

– the curve has a steep incline and high convexity.
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TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.778 0.286 0.259 0.778 0.389 0.755 yes
0.714 0.222 0.962 0.714 0.82 0.75 no
0.722 0.229 0.882 0.722 0.771 0.751 avg

Figure 5.30: Naive Bayes accuracy by class (balanced corpus, excluding the sentence
length attribute)

Figure 5.31: Receiver operating characteristic (ROC) curve for naive Bayes classifi-
cation (balanced corpus, excluding the sentence length attribute)
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Last but not least we decided to verify whether the inclusion of sentence length

statistics had a similar effect on the balanced corpus than it had on the unedited

corpus. For that we ran an additional round with the naive Bayes classifier by

training it on the balanced corpus without the sentence length attributes. The result

is the accuracy table in Figure 5.30 and the receiver operating characteristic curve

in Figure 5.31. The accuracy table shows a greatly increased true positive rate for

intentional epanaphora but at the cost of a greater overall error ratio and lower

weighed average f-measure. It is apparent that without the sentence attributes the

algorithm is not capable of being as discriminatory. Furthermore the area under the

ROC plot is smaller than that of the naive Bayes classifier trained with the corpus

which included the sentence length attributes. In observing the curve we see that it

has a pronounced indentation, and that it tapers off earlier than its counterpart.

We applied the same procedure to the logistic regression algorithm and obtained

the ROC curve in Figure 5.33. At a glance we can see that it is smoother than that

in Figure 5.27, which is a good sign. However, the accuracy table in Figure 5.32

shows a lower rate of true positives while maintaining a high false positive rate.

We propose that the figures for the two stochastic algorithms appear to support

Hypothesis 5.1.2. Balancing the training corpus was definitively the biggest boost in

true positive generation, but it was done at the cost of lower precision. The inclu-

sion of the sentence length attributes provided a balancing measure which allowed

the algorithms to act more discriminately towards the test corpora. This backs up

the distribution observed in Figure 5.11. Without a sentence length discriminator

the distribution of epanaphora tagged as intentional reflected that of the original,
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TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.556 0.257 0.217 0.556 0.313 0.721 yes
0.743 0.444 0.929 0.743 0.825 0.721 no
0.722 0.423 0.848 0.722 0.767 0.721 avg

Figure 5.32: Logistic regression accuracy by class (balanced corpus, excluding the
sentence length attribute)

Figure 5.33: Receiver operating characteristic (ROC) curve for logistic regression
classification (balanced corpus, excluding the sentence length attribute)
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unannotated corpus. By introducing the sentence length attribute we were able to

provide a training set that more closely resembled the perceptions of the human

annotators.

5.1.4 Constraint Tightening

Having demonstrated that it is possible to train machine learning algorithms to de-

tect likely instances of intentional epanaphora we now want to focus on generating

a training set that is geared towards producing classifiers capable of discerning in-

stances of epanaphora which are indubitably intentional. This is a significant focus

shift from the previous classification goal. The intent in Section 5.1.2 was to pro-

duce a trained classification algorithm with the best results for generic intentional

epanaphora. The measurements for that goal were performed on a relatively small

corpus, since it required an evaluation step that involved a manually tagged corpus.

In this section we move beyond that constraint by working on a large corpus and

evaluating a representative sample of the resulting corpus. This allows us to shift

our focus towards maximising the precision of the classification algorithm at the cost

of recall, since we are no longer intent on maintaining a decent f-measure ratio for

intentional epanaphora classification.

Since we are no longer bound by the recall measure on the classification results

we are immediately able to tighten the constraints for the generation of the classi-

fier training corpus. The most conspicuous method of achieving this is by pruning

those instances of epanaphora which are least likely to be classified as intentional

epanaphora. By tagging the instances of epanaphora whose attributes are least likely
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to lead towards an intentional classification we are able to automatically generate a

blacklist during the classifier training process.

Attribute Constraints

In Section 5.1.1 we had already performed an early evaluation of the attributes of

intentional and accidental epanaphora, and observed the qualities most likely to

produce unambiguous tagging of intentional epanaphora. We can now revise these

observations and use them to produce strict pruning rules.

Figure 5.34: Annotated n-gram statistics

The first constraint to be applied is the pruning of instances of epanaphora whose

n-gram length is one. An n-gram length of one indicates that only the first word
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of each sentence involving a particular epanaphora pattern is being repeated. From

Figure 5.34 we can clearly see that epanaphora with this n-gram length are over-

whelmingly strong representatives of accidental epanaphora.

Observation 5.1.3. Epanaphora of n-gram length one are least likely to be of in-

tentional nature.

Figure 5.35: Annotation tuple statistics

Unlike n-gram statistics there is no clear indicator in Figure 5.35 that epanaphora

with tuples of any width are significantly less likely to be classified as accidental over

intentional. Instances of epanaphora of tuple width four are slightly more likely to

be classified as intentional, but not overwhelmingly so. Reviewing these statistics
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helps explain why the J48 decision tree in Figure 5.24 does not have a branch for

tuple width. Still, we have to keep in mind that the values shown in Figure 5.35

are normalised over a representative sample of 100 for each category. Referencing

back to Figure 5.4 we see that instances of accidental epanaphora are much more

pervasive than instances of intentional epanaphora. If we recreate Figure 5.35 with

Figure 5.36: Annotation tuple statistics (absolute values)

absolute values in place of the normalised statistics we discover that the uneven ratio

of intentional to accidental epanaphora generates an imbalance in the incidence of

intentional epanaphora as seen in Figure 5.36. In order to amortise this asymmetry

we have decided that it is prudent to prune all instances of epanaphora of tuple

width two. This step does not alter the normalised ratio of intentional to accidental
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epanaphora, but it does significantly reduce the number of accidental epanaphora

encountered during the annotation process. In doing so we facilitate an increased

performance for the routine of annotating instances of intentional epanaphora.

Observation 5.1.4. There is no uniquely identifying tuple width characteristic which

distinguishes between intentional and accidental epanaphora.

Figure 5.37: Annotation gap statistics

The third constraint based on attribute analysis is for the gap width between

constituent sentences of intentional instances of epanaphora. Figure 5.37 shows a

very steep decay in the incidence of intentional epanaphora as the median width of

the gap increases. It is immediately clear that instances of epanaphora with a median
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gap width that is greater than or equal to six are accidental beyond the shadow of

a doubt. We can furthermore increase this constraint to a reasonable set including

instances of epanaphora of median gap width greater than or equal to two. This

leaves us with zero-gap epanaphora and instances of epanaphora with a median gap

width of one. The former is plainly the best representation of intentional instances

of epanaphora. The latter can be judged in two different ways. On the one hand

instances of epanaphora of width one are more frequently accidental than intentional.

On the other hand they are still a significant portion of all the instances of epanaphora

tagged as intentional. Ultimately the deciding factor in deciding whether to include

instances of epanaphora matching this attribute value is the initial justification for

the criteria pruning process, namely the focus on precision over recall. As a result

we have chosen to include epanaphora of a median width of one in the pruning step.

Observation 5.1.5. A non-zero median n-gram gap is a strong indicator of acci-

dental epanaphora.

The last numeric attribute to be considered is the length of the constituent sen-

tences of an instance of epanaphora. Figure 5.38 shows how intentional epanaphora

favour short sentence lengths of 15 tokens of less. However, in keeping in line with

the previous decisions on boundaries for attribute value-based pruning we will be

reducing this margin further to sentences whose length is less than ten tokens. This

specific value was obtained by performing the third order polynomial interpolation

as shown in Equation 5.1 on the datapoints from Figure 5.38.

y = a0 + a1x+ a2x
2 + a3x

3 (5.1)

154



Figure 5.38: Annotation sentence length statistics
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The resulting plot is shown in Figure 5.39. The actual values for the parameters are

displayed in Figure 5.40. Figure 5.39 clearly shows the intersection of the two plots

at a median sentence length of ten, making it a suitable cutoff value for the pruning

of ambiguous instances of epanaphora. This value is actually fairly conservative.

Figure 5.39: Annotation sentence length statistics with polynomial interpolation
curves

Parameter Value Uncertainty Value Uncertainty
(match) (match) (nomatch) (nomatch)

a0 0.2787 ±1.1333 -1.5763 ±1.0217
a1 3.564 ±0.4782 2.1807 ±0.3762
a2 -0.4329 ±0.0548 -0.1906 ±0.0376
a3 0.0133 ±0.0018 0.0046 ±0.0011

Figure 5.40: Polynomial interpolation values

Such a statement can be backed by plotting the normal distribution for the values

in Figure 5.38 as per Equation 5.2.

y = eax
2+bx (5.2)
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Figure 5.41: Annotation sentence length statistics with normal distribution interpo-
lation curves

Parameter Value Uncertainty Value Uncertainty
(match) (match) (nomatch) (nomatch)

a -0.0814 ±0.0045 -0.0166 ±0.0014
b 0.8904 ±0.0302 0.3441 ±0.019

Figure 5.42: Normal distribution interpolation values
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The normal distribution graph in Figure 5.41 places the cutoff value for pruning of

ambiguous epanaphora at sentences of a length of eight tokens.

Observation 5.1.6. Epanaphora whose constituent sentences have a median length

of ten or more are likely to be accidental.

Figure 5.43: Annotation keyword statistics

The last epanaphora pruning criteria we are introducing is based on the keyword

analysis performed during the annotation phase in Section 5.1.1. We had identified

four categories in which the ratio of intentional to accidental epanaphora was dispro-

portionate: ‘Articles’, ‘reference of identity’ (first person singular), ‘questions’, and

‘other’. Of those four, only two are useful for generating pruning criteria, namely
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‘articles’ and ‘reference of identity’. ‘Other’ and ’question’ are categories that place a

higher emphasis on intentional epanaphora. As with the tuple width attribute these

two categories would be used to enforce a classification of an instance of epanaphora

as intentional, instead of dismissing a classification as accidental. The ‘article’ cat-

egory is overwhelmingly accidental. This comes as no surprise, since articles are

very generic tokens which occur with high frequency at the beginning of sentences.

We can state with good confidence margins that the majority of the ‘article’ class

instances of accidental epanaphora fall within the pruning criteria for epanaphora of

n-gram length of one in Figure 5.34. The ‘reference of identity’ category, on the other

hand, was not expected to be a candidate for the creation of pruning constraints.

The reason for the high incidence of accidental epanaphora in this category can be

attributed to the abnormal high frequency of recounts in singular first person in the

input corpus. As a result we have stumbled upon the first corpus-specific constraint.

We do not expect however that the inclusion or exclusion of this constraint should

have too high of an effect on the quality of epanaphora classification. Unlike the ‘arti-

cle’ keyword category which was unambiguously accidental, the first-person singular

‘reference of identity’ category is not overwhelmingly one-sided.

Observation 5.1.7. Only the ‘article’ keyword category is a good constraint for

keyword-based pruning.

Constraint Testing

In order to test the effectiveness of the application of constraints we ran a new

annotation sequence. The procedure was equal to that of the annotation process
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in Section 5.1.1 save for two items. First, all annotators received disjoint datasets.

We are no longer focused on obtaining inter-annotator agreement statistics, which

allows us to allocate independent input corpora to each annotator. The use of disjoint

datasets in turn allows us to create a training set of equal size to the one from Section

5.1.1 at a faster pace and with less resource consumption. The second alteration

was that instead of indiscriminately passing the input to the annotators, all the

instances of epanaphora were pre-processed. Any instance of epanaphora that did

not fall within the constraints for possible intentional epanaphora in Section 5.1.4

was automatically tagged as being accidental by the preprocessor and ignored by

the annotation tool. The effect of this was two-fold: First, it allowed annotators to

process the corpus at a much faster pace, since much of the tedium of repetitively

encountering large blocks of epanaphora without a single candidate for intentional

epanaphora was eliminated. Secondly the ratio of perceived instances of intentional

epanaphora to instances of accidental epanaphora by the annotator was evened out.

Table 5.44 reflects these results. Out of a total of 14444 instances of epanaphora

from the input corpus a mere 1.025 percent met the constraint criteria for intentional

epanaphora. This value actually comes close to the 1.282 percent rate for unanimous

intentional epanaphora in Figure 5.4. Those instances of epanaphora which passed

the constraint preprocessor were split nearly evenly among intentional and accidental

during the actual annotation process, with 52.027 percent having been annotated as

accidental and 47.973 percent annotated as intentional. In the pilot test in Section

5.1.3 the annotator-agreement corpus had been used to evaluate the accuracy of

the classification algorithms. Since we have forfeit the generation of such a corpus
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Description Instances Percent
Total accidental (automated) 14296 98.975
Total accidental (annotated) 77 0.533
Total intentional (annotated) 71 0.4916

Absolute total 14444 100
Training accidental (automated) 10076 98.94
Training accidental (annotated) 56 0.55
Training intentional (annotated) 52 0.511

Training total 10184 100
Test accidental (automated) 4180 99.052
Test accidental (annotated) 21 0.498
Test intentional (annotated) 19 0.45

Test total 4220 100

Figure 5.44: Statistics on constraint-based training and test corpora

for the constraint testing phase we needed to generate a different test corpus. For

this purpose we have split the constraint-testing corpus into two separate corpora:

One corpus for classifier training, and one for classifier evaluation. As can be seen in

Figure 5.44 these two sub-corpora maintain the ratios of the parent corpus. This type

of corpus is specially useful in this situation because it evaluates the classification

algorithms as they would perform in the wild on generic input corpora.

It was concluded in Section 5.1.3 that the naive Bayes classifier had the best

performance with regards to tagging instances of intentional epanaphora. It is for

that reason that it was selected as the primary classification algorithm for testing the

application of constraints. Figure 5.46 shows a very good receiver operating charac-

teristic (ROC) plot with a very large area ratio under the curve. However, a look

at the statistics in Figure 5.45 shows that the shape of the ROC curve is largely or

entirely due to the statistics for instances of epanaphora classified as accidental. The

naive Bayes algorithm’s tendency to err in favour of tagging instances of epanaphora
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TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.842 0.132 0.028 0.842 0.054 0.955 yes
0.868 0.158 0.999 0.868 0.929 0.955 no
0.868 0.158 0.995 0.868 0.925 0.955 avg

Figure 5.45: Naive Bayes accuracy by class (constraint corpus, split test)

Figure 5.46: Receiver operating characteristic (ROC) curve for naive Bayes classifi-
cation (constraint corpus, split test)
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as intentional was welcome in light of the sparse training and test sets in Section

5.1.3 and perceived as a strength of the algorithm. However, in this section our goal

has been moved from achieving high recall and precision to obtaining high precision

values only.

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
1 0.159 0.057 1 0.108 0.972 yes

0.841 0 1 0.841 0.914 0.972 no
0.843 0.002 0.991 0.843 0.906 0.972 avg

Figure 5.47: Naive Bayes accuracy by class (constraint corpus without annotation,
split test)

Figure 5.48: Receiver operating characteristic (ROC) curve for naive Bayes classifi-
cation (constraint corpus without annotation, split test)

In Section 5.1.3 a change in the training corpus had brought forth better clas-

sification results during the algorithm test phase. In an attempt to replicate these

results we created a variant of the training corpus. Instead of splitting the instances

of epanaphora among intentional and accidental based on both constraint fitting

and annotation we eliminated the latter for this corpus. All instances of epanaphora
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which were not rejected by the preprocessor were tagged as intentional, and the

results were fed to the naive Bayes classifier. Figure 5.48 shows a better receiver

operating characteristic curve, both in respect to the area under the curve as well

as the shape of the curve itself. The precision measure for intentional epanaphora,

as seen in Figure 5.47, also improved, effectively doubling when compared to the

annotated corpus. This is a likely indicator that the Bayesian classifier is adjusting

its parameters to mirror that of the preprocessor. However, it is still far outside the

acceptable parameters for the precision rate.

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.947 0.029 0.13 0.947 0.229 0.999 yes
0.971 0.053 1 0.971 0.985 0.996 no
0.971 0.053 0.996 0.971 0.982 0.996 avg

Figure 5.49: Non-naive Bayes accuracy by class (constraint corpus, split test)

Figure 5.50: Receiver operating characteristic (ROC) curve for Bayes (non-naive)
classification (constraint corpus, split test)

Despite the improved receiver operating characteristic curve and precision for the
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unannotated training corpus used for Figure 5.47 we felt that it was not the correct

direction for the research goals in this section, and that instead it was only testing

the classifiers’ ability to imitate the constraint rules. The naive Bayes classifier had

to be replaced, and the obvious strategy for this step was to test a different Bayesian

classification algorithm. Figure 5.49 shows the results of training and testing a non-

naive Bayes classifier with the same corpora that were used in Figure 5.45. The ratios

resulting from the use of this classifier are much better than those of the naive Bayes

classifier. However, a precision of only thirteen percent in classifying intentional

instances of epanaphora is still too low, even with the improved ROC curve.

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.842 0.002 0.64 0.842 0.727 0.999 yes
0.998 0.158 0.999 0.998 0.999 0.999 no
0.997 0.157 0.998 0.997 0.997 0.999 avg

Figure 5.51: M5P with regression accuracy by class (constraint corpus, split test)

Figure 5.52: Receiver operating characteristic (ROC) curve for M5P with regression
classification (constraint corpus, split test)
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Having concluded that both the naive Bayes classifier as well as the non-naive

Bayes classifier were unable to achieve a satisfying level of precision we began shift-

ing our focus towards other algorithms. One of the most promising ones was the

M5P decision tree algorithm combined with a classification via regression wrapper.

This combination was capable of producing a near-perfect receiver operating char-

acteristic curve (Figure 5.52) with a medium precision in classification of intentional

epanaphora at a ratio of 0.64 (Figure 5.51).

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.789 0.002 0.682 0.89 0.732 0.999 yes
0.998 0.211 0.999 0.998 0.999 0.999 no
0.997 0.21 0.998 0.997 0.997 0.999 avg

Figure 5.53: Grafted J48 decision tree accuracy by class (constraint corpus, split
test)

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.421 0.001 0.727 0.421 0.533 0.71 yes
0.999 0.579 0.997 0.999 0.998 0.71 no
0.997 0.576 0.996 0.997 0.996 0.71 avg

Figure 5.54: Nearest neighbour accuracy by class (constraint corpus, split test)

Other classification algorithms were explored with various results. J48 decision

trees did not perform as well as M5P trees with the regression wrapper, but grafted

J48 trees managed to eke out a small advantage in precision, as can be seen in Figure

5.53. The nearest neighbour like algorithm using non-nested generalized exemplars

(NNge) in Figure 5.54 had the best precision, but at the cost of all other statistics,

making it likely that the good precision measure may have been a fluke. These

results put the decision tree algorithms above all others, with grafter J48 trees hav-

ing producing the best results, followed very closely by M5P trees with a regression
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wrapper. Bayesian classifiers took the bottom with the worst precision performance.

These results are a complete reversal from those in Section 5.1.3. A possible expla-

nation for this divergence is the different size for the training and test corpora used.

The datasets used in Section 5.1.3 were very small. The constraint preprocessor

enabled us to generate larger datasets, addressing one of the major reasons for the

poor performance of the other classification algorithms.

5.2 Study Expansion - New Corpus

Throughout Section 5.1 the nucleus of the research has revolved around the use

and study of the corpus identified in Section 3.1.2, namely the 2006 TREC Blog

Track. The justification for this focus had been that the TREC Blog track is a good

representative of contemporary prose, domain-independent, and is structured in a

sufficiently predictable way to allow easy paragraph and sentence boundary detection.

However, focusing on one corpus alone does not give us the opportunity to test the

robustness of the epanaphora classification rules when applying them to a different

literary domain. To address this shortcoming we introduced a new corpus to our

research. The new corpus is sourced from late 19th Century Canadian literature in

the form of printed and published texts which were fed through an Optical Character

Recognition (OCR) system to convert them to a generic machine-readable digital

format. This corpus was chosen for a variety of reasons. It is contemporary enough

to maintain a vocabulary similar to the TREC Blog corpus. This choice was made

in order to facilitate the reuse of the sentence boundary detection algorithm. By
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choosing corpora which were written with similar vocabularies we hoped to minimise

the need to rebuild the abbreviation dictionaries for the new corpus. The second

criteria for selecting the Canadian literature corpus was the desire to focus more

on edited texts with complete sentence structures. A large quantity of the content

from the TREC Blog corpus was composed in a personal writing style. Such style

is not designed for extensive sentence planning and revision, which impedes the

epanaphora classification process in that it increases the work required to produce a

balanced training corpus. We reason that the repetitions of n-grams encountered in

the Canadian literature corpus are more likely to be of an intentional nature.

5.2.1 Corpus Preparation

The first task in preparing the Canadian literature corpus for epanaphora detec-

tion and classification was to convert it to a format compatible with out annotation

framework and classification schemas. Fortunately the OCR system already pro-

duced machine-readable documents. However, these documents contained a large

amount of extraneous metadata. We designed a preprocessor to extract the text

content from these documents and store it in our own existing file format using

Extensible Markup Language (XML).

Following that we proceeded with the epanaphora detection process from Section

4.3. The output of this routine was our new base corpus. It contains the largest

possible set of unique instances of detected epanaphora for the Canadian literature

corpus, and is ready to be used by the epanaphora classification system. However, we

decided to postpone that step and perform additional refinements on the algorithm
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before proceeding with the classification routines. Specifically we chose to apply the

pruning mechanism from Section 5.1.4. We were sufficiently confident that the con-

straints that were defined in that segment of the study are adequate for application

to any epanaphora classification process whose goal is to solely detect intentional

instances of epanaphora. In fact, after a review of the pruning criteria we decided

to further tighten the constraints. For the attribute sets relating to n-gram length,

tuple gaps, and sentence length we had initially used only the median values, as

opposed to any of the maximum, minimum, or average values available. However,

when working with the new corpus we decided to apply tighter restrictions to the

attributes based on the nature of the constraints laid on them.

For n-gram lengths the applied constraints are intended to place a lower bound

on the n-gram length of an instance of epanaphora before it is allowed to be tagged

as intentional. It is therefore more appropriate to use the minimum n-gram length

among a set of sentences as the discriminating value instead of the median n-gram

length. In addition of placing a harder limit on the minimum n-gram length of

an instance of epanaphora this constraint synchronises the design of the pruning

mechanism with that of the epanaphora detection algorithms in Section 4.3.3, since

they themselves use the minimum n-gram length as a bound for recursion.

The use of attribute values for the tuple gap sets was also changes for the same

motivation which led to the change in use of n-gram length attributes. In Sec-

tion 4.3.3 the maximum gap size between constituent sentences of an instance of

epanaphora was used as an additional method for producing epanaphora variants as

per Algorithm 4.6. It therefore stands to reason that the maximum gap size allowed
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should replace the median tuple gap size allowed for the epanaphora pruning process.

An additional side-effect of switching the n-gram length constraint to be equal

to the lower bound and the tuple gap constraint to be equal to the upper bound is

that two of the attributes used by the pruning system are now reduced to dealing

with absolute values instead of approximations.

Lastly we altered the way in which keyword categories were used as constraints

within the pruning mechanism. In Section 5.1.4 we had dismissed the article keyword

category as being largely accidental. However, we later speculated that the reason

for this classification is not specifically due to the sentences beginning with the first

token of the incumbent sentences being identified as articles, but due to the fact

that articles are too generic as keywords. They are context-free filler words, and as

such carry little weight by themselves. Their occurrence in instances of epanaphora

needs to be taken into account when considering the n-gram length attributes. We

modified our constraint application process to consider co-occurrences of attributes.

As a result we were capable of relaxing the constraints for instances of epanaphora

tagged with the article category. Instead of rejecting all instances of epanaphora

belonging to this keyword category we introduced additional rules requiring a larger

lower bound for the n-gram length attribute. The result is equivalent to the first

word of sentences beginning with article keywords is considered to be a zero-length

token.

Two more keyword categories were introduced to the pruning algorithm. The

first was the use of conditional tokens, i.e. the conditional keyword category. This

category was treated like the article one by treating the first word of constituent
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sentences as a a zero-length token for the purpose of n-gram length analysis. The

second category added to the constraint procedure was the one tagging conjunctions.

In the TREC Blog track, sentences beginning with these keywords were allowed by

default. For the Canadian literature corpus we reversed that choice. We justify this

decision by pointing out that repeated sentences beginning with conjunctions are

not grammatically complete. While their occurrence was permitted in the TREC

Blog corpus due to the prevalence of the personal writing style, we decided that

the instances of intentional epanaphora from the Canadian literature corpus should

strive to contain only well-formed sentences.

5.2.2 Domain Analysis

The classification procedure that was prevalent throughout Section 5.1 involved the

human-assisted creation of training, classification, and test datasets. The strategy

behind the generation of such datasets was to address the steps necessary to evaluate

various machine learning algorithms and test them for performance. Under such

circumstances it was fundamental to have standardised datasets throughout each

step in order to facilitate comparing and contrasting of various algorithms. However,

at the current stage of this thesis’ research such standardised datasets are no longer

compulsory.

The first task in performing classification on the new corpus was to determine

the quality of the constraints applied by the pruning algorithm itself. We ran the

M5p decision tree with regression classification – the preferred classifier from Section

5.1.4 – against the pruned corpus. Every pruned instance of epanaphora was tagged
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TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.046 0.006 0.399 0.046 0.082 0.928 yes
0.994 0.954 0.928 0.994 0.96 0.928 no
0.924 0.884 0.889 0.924 0.895 0.926 avg

Figure 5.55: M5P with regression accuracy by class (literature corpus)

Figure 5.56: Receiver operating characteristic (ROC) curve for M5P with regression
classification (literature corpus)
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as being accidental, and the rest was tagged as intentional instances of epanaphora.

The ROC plot shows a a sizeable area under the curve in Figure 5.56, hinting at a

fairly reliable classification result. However, the shape of the curve is significantly

more shallow than those from Section 5.1.4. Looking at the ratio table in Figure

5.55 we can see the source of this reversion: The recall measure for intentional in-

stances of epanaphora is extremely low. By further examining the confusion matrix

Classified
Tagged intentional accidental

intentional 324 6792
accidental 488 88079

Figure 5.57: Confusion matrix: M5P with regression accuracy by class

for the classifier we further see that out of a total of 7116 instances of epanaphora

that were tagged as intentional – that is, instances of epanaphora that passed the

constraint rules – less than five percent (324 instances) were classified by the algo-

rithm as being intentional. By contrast, only 0.551 percent of the tagged instances

of accidental epanaphora were classified as being intentional. What this tells us is

that the constraints that were applied to the TREC Blog corpus are too loose for

the Canadian literature corpus. To verify this we had a human annotator process

a sample of the set of constraint-approved instances of epanaphora. The results

were quite telling. Figure 5.58 shows nearly twice as many instances of accidental

Instances Percent
Total 223 100

Intentional 77 34.529
Accidental 146 65.471

Figure 5.58: Annotated epanaphora distribution
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epanaphora than instances of intentional epanaphora. This greatly differs from the

ratios in Section 5.1.4, where the instances of epanaphora were split evenly among the

intentional and accidental categories. It is also evident that the previous hypothesis

about insufficient pruning holds true. Delving further into the distribution by at-

tribute shows nothing out of the ordinary for numeric attributes, but the distribution

of epanaphora by keyword category reveals the likely source of the observed reduc-

tion in accuracy. Figure 5.59 shows the normalised distribution of epanaphora per

keyword class. While sporting a scattering that diverges somewhat from that of the

original TREC Blog corpus (Figure 5.10) it does still demonstrate a healthy spread

among the various keyword categories. In contrast the instances of epanaphora in

the Canadian literature corpus are almost exclusively allotted into the other keyword

category. We take this as evidence of a need to implement a more atomic form of

keyword classification for domain-specific texts. Before beginning with that area of

research, however, we need to determine a baseline accuracy that can be used as a

starting point for new developments.

The table in figure 5.61 shows exactly how endemic the issues are that arise

from a lack of keyword categorisation. While the algorithm was capable of cor-

rectly identifying all annotated instances of intentional epanaphora, it was unable

to discriminate the majority of annotated accidental instances of epanaphora. The

algorithm’s inability to to use the keyword attribute for classification is also com-

pounded by a an already-tightened variety for the attributes which were involved

in pruning. In the end, all those complications come together to produce a receiver

operating characteristic curve (Figure 5.62) which hardly deviates from the diagonal.
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Figure 5.59: Training corpus distribution by keyword

Figure 5.60: Test corpus distribution by keyword
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TP Rate FP Rate Precision Recall F-Measure ROC Area Class
1 0.774 0.405 1 0.577 0.575 yes

0.226 0 1 0.226 0.369 0.575 no
0.493 0.367 0.795 0.493 0.441 0.575 avg

Figure 5.61: M5P with regression accuracy by class (literature corpus, constrained)

Figure 5.62: Receiver operating characteristic (ROC) curve for M5P with regression
classification (literature corpus, constrained)
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Since the machine learning algorithms are incapable of performing sufficiently

accurate epanaphora classification with their current training set we need to find a

different approach to improve the accuracy of the epanaphora classifiers. A simple

approach is to return to a more hands-on approach to examining the Canadian

literature corpus.

5.2.3 Corpus Characteristic Re-Evaluation

Having already discovered that the constraints applied during the pruning process

are insufficiently tight we decided that it had become necessary to scrutinise the

instances of epanaphora for context information.

Accidental Epanaphora

We had come to the conclusion that the first observation task should be to identify the

types of accidental epanaphora which do not get caught by the constraint application

algorithm. Two types of repetition are immediately apparent. One of these types is

lists, and the other one is legal documents .
. . .
Chief Events of Grecian History.
Chief Events of Roman History.
Chief Events of Eastern Empire.
Chief Events of German History.
Chief Events of English History.
. . .

Figure 5.63: Excerpt from the table of contents of a history book

It is easy to understand why list-type repetitions are difficult to exclude from

the list of candidates for intentional epanaphora. These kinds of repetitions are com-
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monly composed of multiple short sentences with very similar grammatical structure.

They therefore fall within the acceptable bounds for all the primary constraints: The

sentences are not excessively long, they are consecutive (gapless), they regularly con-

tain repetitions involving three or more sentences, and the list format usually guar-

antees that many of the involved list items (sentences) will follow the same overall

structure, increasing the incidence of longer n-grams.

Knowing that these types of repetitions fall within the given constraints despite

being almost entirely accidental, how can they be eliminated from the set of candidate

instances for intentional epanaphora. To answer that question we were required to

dig deeper into the texts and their content. Continued examination of the list-type

repetitions yielded a keen insight into their nature. We discovered that these types

of repetitions are most commonly the result of the OCR software indiscriminately

parsing all pages of a printed text, including indices, tables of content, and data tables

with repeating headings. While this is usually not a significant issue, the relevant

context information was lost when converting the output of the OCR software to a

format compatible with the epanaphora detection and classification software. The

result is that most, if not all, of the indicators which would have been capable of

identifying these portions of text as irrelevant were discarded during the format

conversion process. We conclude that it is therefore necessary to pay a higher degree

of attention to the structure of a document before parsing it for epanaphora detection

and classification.

Throughout the examination of the texts in the Canadian literature corpus we

discovered that the documents it contained were not only a compilation of literary
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. . . Gold Medal for Oil Painting, Miss Carrier, New York. Silver
Medal for Oil Painting, Miss Mitchell, Ottawa. Silver Medal
for Crayon Drawing, Miss Maggie Dowdall, Merrickville. Sil-
ver Medal for Drawing in Coloured Crayons, Miss M. E. Kelly,
Grenville . . .

Figure 5.64: Excerpt from an awards list

. . . Ten livres of small glass Beads – white, green,and transparent.
One gross of large Clasp-knives, with horn handles. One gross
of round buckles, both large and medium-sized. One gross of small
metal plates. . . .

Figure 5.65: Excerpt from an inventory

texts, but that they also included texts of legal nature such as court and legisla-

tive proceedings, sales inventories, land ownership declarations, and other types of

records. What all these texts have in common is that they are records, and none

of them are written with any rhetorical function in mind. They are clear examples

of the domain-sensitive nature of epanaphora classification, and indicators that it is

not wise to have this type of heterogeneity in a corpus.

Special Categories of Intentional Epanaphora

Until this point we have focused our examination on the attributes of the instances

of accidental epanaphora which have eluded pruning through the application of con-

straints. We discovered two types of categories of text to which the greatest amount

of instances of accidental epanaphora could be attributed. Section 5.2.3 first focused

on indices and tables of content attached to literary documents. It then proceeded

to put the spotlight on the heterogeneous nature of the input corpus. However, no

evaluation has yet been made as to the qualities of the instances of epanaphora which
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. . . One copy to the Lieutenant-Governor. Six copies to the Legisla-
tive Council. Two copies to the Executive Council. One copy to
each Member of the Legislative Council. One copy to each Mem-
ber of the Executive Council. One copy to the Chief Justice. One
copy to the Master of the Rolls. . . .

Figure 5.66: Excerpt from the proceedings of a council meeting

were annotated as being intentional.

Two groups of instances of intentional epanaphora ended up coming to our at-

tention. One such group was that of rhetorical questions. These types of rhetorical

figures are very prominent within their context, and they often occur in clusters.

The second category of intentional epanaphora came from texts with high emotional

appeal. Among these, two common sub-categories stand out: Religious texts, and

patriotic references.

Has she loved you as I have done? Has she humbled and made
so little of herself as to tell you so, as I have done? Has she helped
you into a paying practice, introduced you to society, knowing your
dark secret all the time?

Figure 5.67: Example of a cluster of rhetorical questions starting with a verb

What do I care? What do I care? What do I care?

Figure 5.68: Example of a repeating question

The sub-category of rhetorical questions was unexpected, given the low incidence

of question keywords shown in Figure 5.60. However, it soon became apparent why

these instances of epanaphora were not being picked up by the keyword categoriser.

Most of the rhetorical questions encountered during the annotation phase of the

Canadian literature corpus did not contain a question keyword as the first token of
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their constituent sentences, but a verb instead. Figure 5.67 shows an example of

such a cluster of rhetorical questions. This is yet another indicator that the keyword

categorisation is flawed, or at the very least insufficiently atomic.

Have mercy! Have mercy! Have mercy!

Figure 5.69: Example of a repeating exclamation

Hurrah for love! Hurrah for hope! Hurrah for industry!
Hurrah for bonnie Canada, And her-bonnie maple tree!

Figure 5.70: Example of a cluster of patriotic exclamations

As was mentioned earlier, two categories of the intentional epanaphora with high

emotional content stand out: Religious texts, and patriotic references. The former

category, of which an example can be seen in Figure 5.69, has a strong emphasis on

short, repeated exclamations. These are frequently linked to church songs an chants,

and have a format which encourages simplicity. The second sub-category, patriotic

references, is more interesting in that it frequently occurs in poetic sources, such

as the poems of Thomas D’Arcy McGee [45] and The Emigrant’s Song [40]. The

high emotional content of these poems can very well be justified by considering the

historical context of their authorship.

A side-by-side examination of the two categories discussed above – rhetorical

questions and texts with high emotional content – reveals further parallels between

the two. First there is the punctuation used. Rhetorical questions, by their very

nature, are terminated with a question mark. The instances of epanaphora with

high emotional content, on the other hand, are not required to be terminated with

any particular symbol. However, a prominent portion of those types of intentional
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epanaphora are terminated with an exclamation mark. We therefore postulate that

the type of punctuation used among the constituent sentences of an instance of

epanaphora can be used to discriminate certain types of intentional epanaphora.

The second parallelism is the verbatim repetition of the same sentence, as seen

in Figures 5.68 and 5.70. These types of rhetorical figure feature a strong correla-

tion between the numeric values of their attributes. In the most obvious cases, this

correlation is that the minimum n-gram length ηmin, the maximum n-gram length

ηmax, and the minimum and maximum sentence length all have the same value. Fur-

ther variations can be introduced by loosening the constraints as needed. Finally,

this particular correlation between the values of the numeric attributes for the in-

stances of epanaphora exposes a shortcoming of the attribute format and its role

in the training of the epanaphora classification algorithms. The format in which

the attributes were recorded does not provide any explicit relation between the at-

tributes, their values, and the values of other attributes. It is therefore impossible

for example for a classification algorithm to know that the values of the minimum

and maximum n-gram lengths for any instance of epanaphora must be no less than

the minimum sentence length and no more than the maximum sentence length for

that same instance of epanaphora.

Lastly there is the matter of keyword categories. It is already evident that the

primary task for improving this attribute is the need to generate a useful subdivision

of the other category. Given the revelation that many of the intentional instances

of epanaphora from clusters of rhetorical questions constitute of groups of sentences

beginning with verbs we propose that part of speech tagging should be used as one
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of the criteria for subdivision.

5.2.4 Analysis of Effectiveness of Special Categories

In Section 5.2.3 we had identified two types of categories of intentional epanaphora

with special traits. These were those with special termination punctuation – question

marks and exclamation signs – and those with a strong correlation between n-gram

length and sentence length. In this section we will examine the results from applying

additional meta-constraints to the candidate instances of epanaphora.

Punctuation

Instances Percent
Total 110 100

Intentional 101 91.818
Accidental 9 8.182

Figure 5.71: Sample annotated epanaphora distribution (question terminator)

Instances Percent
Total 81 100

Intentional 80 98.765
Accidental 1 1.235

Figure 5.72: Annotated epanaphora distribution (exclamation terminator)

The values for the ratio in Figures 5.71 and 5.71 are telltale signs of the effective-

ness of introducing punctuation terminators as criteria for automatic classification of

instances of epanaphora. Both the question marks as well as the exclamation signs are

extremely effective at selecting a high ratio of intentional epanaphora. The question
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Figure 5.73: Test corpus distribution by keyword (question terminator)
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terminator in particular displays a marked distribution of instances of epanaphora

among keyword categories. Figure 5.73 shows that the marked rhetorical questions

are more likely to be tagged as other, reinforcing the idea from Section 5.2.3 that part

of speech categorisation will prove to be a vital expansion of the keyword attribute

for instances of epanaphora.

The highly intentional nature of both rhetorical questions and epanaphora which

are terminated with exclamation signs supports the argument from Section 2.3.1 that

the appeal to pathos plays a significant role in rhetorical figures. We can therefore

conclude that being able to determine whether an instance of epanaphora has a high

pathos appeal is a strong factor in distinguishing between intentional and accidental

epanaphora.

Attribute Homogeneity

Instances Percent
Total 130 100

Intentional 30 23.077
Accidental 100 76.923

Figure 5.74: Sample annotated epanaphora distribution (homogeneous sentence
length)

Instances Percent
Total 32 100

Intentional 31 96.875
Accidental 1 3.125

Figure 5.75: Annotated epanaphora distribution (homogeneous sentence length, list
entries removed)
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Just as the application of sentence terminator constraints proved to exceed all

expectations of effectiveness, so did classification by attribute homogeneity fail to

produce a satisfactory ratio of intentional to accidental epanaphora. The attempt

to use matching values for the sentence length and n-gram length attributes back-

fired. Instead of returning a subset of intentional epanaphora with short and concise

repetition, the type of constraint applied by eliminating sentences with incongruous

sentence lengths revealed a higher ratio of list-type repetitions. The manifestation

of these types of repetitions has again proven to have a major negative effect on our

system’s ability to identify instances of intentional epanaphora in an unsupervised

fashion. However, Figure 5.75 shows that after manually eliminating all accidental

entries that were part of a list or table the results were just as good as those encoun-

tered when constraining candidate instances of intentional epanaphora to sentences

with specific terminators. What we can take away from this is that the careful ap-

plication of constraints to the input corpus can help improve the quality of detection

and classification of intentional epanaphora.

5.3 Summary of Results

Based on the results of our study, we recommend that the approach to detecting

and classifying intentional epanaphora should be treated as a constraint satisfaction

problem. We recommend two sets of constraints, one set to eliminate those repeti-

tions which have the greatest likelihood of being accidental, and one set to select the

remaining repetitions which have the greatest likelihood of being intentional. Our
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results show that the elimination set of constraints should include the following steps:

• Single-token n-grams (n-grams of length one) are primarily accidental and

should be discarded.

• Sentence clusters beginning with article keywords should be discarded. This

rule is of particular importance for repetitions with short n-gram length. Ar-

ticles have a much lower semantic significance than all other word classes, and

as a result introduce too much noise to our measurements.

• The likelihood of intentionality drops exponentially with gap width. We rec-

ommend not to allow a median gap width of more than one sentence between

the constituents of a repetition.

• Long-sentence repetitions are primarily accidental according to our results. We

recommend using an initial sentence length limit of ten or more words, followed

by a tuning of this variable in order to maximise the f-measure after applying

this constraint.

The set of selection constraints for classifying instances of epanaphora as inten-

tional is significantly shorter than the set of elimination constraints. This is not an

indicator of a lack of intentionality selectors, but a testament to the efficiency with

which the set of elimination constraints is capable of trimming the list of candidate

instances of intentional epanaphora, as well as the effectiveness of the selection con-

straints in selecting clearly intentional instances of epanaphora. These constraints

are as follows:
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• Punctuation is the most important selector for intentional epanaphora. Sen-

tence clusters which are terminated with exclamation signs and question marks

are particularly likely to be part of an intentional instance of epanaphora, even

without the application of the elimination constraints. This property of punc-

tuation makes it a key attribute for the selection of intentional epanaphora.

• The one secondary attribute which can be used to detect instances of intentional

epanaphora is the homogeneity of sentence length. Sentence clusters with low

sentence length deviation have a greater likelihood of forming an instance of

intentional epanaphora. However, this attribute is applicable only to sentences

which are not part of a special class, namely list entries. Lists should be treated

separately in this case because their length is constrained by convention.

One attribute which is notoriously absent in these sets of elimination and selection

constraints is the tuple width of intentional epanaphora candidates. There is no

uniquely distinguishing tuple width value which can be used reliably to place a

candidate instance of epanaphora in either the intentional or accidental group.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Throughout this thesis we have exposed the richness of knowledge that is encased by

rhetorical figures. We have furthermore shown that this knowledge can be exploited

via computational methods to establish novel methods of document analysis.

6.1.1 Epanaphora Detection and Classification

We chose epanaphora as the rhetorical figure focus for our study. As a figure of syntax

(schemes) epanaphora was an ideal candidate for this research. Its syntactic nature

made its detection not only easy, but it also allowed us to minimise the incidence of

errors by not having to rely on possibly inaccurate information such as automated

part of speech tags. Despite its syntactic simplicity epanaphora has proven to con-

tain a wealth of research aspects. We guided our process of discovery towards two
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major categories of epanaphora: Accidental and intentional. Of these two categories,

we focused on the detection and classification of intentional epanaphora. The detec-

tion process was split from the classification process, which allowed us to tune their

parameters individually. Detection of epanaphora was performed on a global basis,

including both accidental and intentional epanaphora, thus allowing us to guarantee

a comprehensive set of results. This comprehensive set is then used by the classi-

fication aspect of our research. Since the input set for classification is guaranteed

to be comprehensive we were able to limit the scope classification of the intent of

epanaphora to a filtering process. Fine-tuning of epanaphora classification was thus

achieved by modifying the parameters used to discriminate between accidental and

intentional epanaphora.

We have shown that while the distinction between intentional and accidental

epanaphora is evident to human observers when pointed out, automated classifi-

cation between intentional and accidental epanaphora is not trivial. The accuracy

with which the examined attributes of instances of epanaphora are capable of deter-

mining the intentional nature of epanaphora varies from one attribute to another.

Furthermore the reliability of the classification by attributes depends greatly on the

interaction between said attributes. For example the first word (keyword attribute)

of the constituent sentences of an instance of epanaphora has a strong effect on the

degree with which the n-gram length of an instance of epanaphora determines its

intentional nature. Auxiliary keywords such as articles diminish an n-gram’s accu-

racy in correctly classifying an instance of epanaphora as intentional or accidental,

in particular for short n-grams. Despite these variances we have discovered that
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certain combinations of attributes are particularly effective at eliminating instances

of accidental epanaphora. Among these combinations are short tuple gaps, wide

tuples, short sentences, and medium n-gram lengths. We were able to use these

combinations to generate a constraint-based pruning processor which is capable of

balancing the ratio of detected intentional to accidental epanaphora in a corpus. We

also discovered that certain types of punctuation – question marks and exclamation

signs – play a significant role in the intentional nature of instances of epanaphora.

An analysis of the text of the instances of intentional epanaphora falling into this

category further revealed that their contents were laden with high emotional appeal.

This reinforces the notion that pathos, the appeal to emotion, is a strong contribut-

ing factor in the intentional nature of epanaphora. Conversely, the strong emotional

appeal in these rhetorical figures supplements the argument that repetition – which

is the core concept of epanaphora – is a substantial contributing factor to saliency.

We also evaluated the most prominent instances of accidental epanaphora and

concluded that context is one of the leading factors in determining the accidental na-

ture of instances of epanaphora. The type of document, the epanaphora instance’s lo-

cation within its document, and the text’s writing style (prose, poetry, non-narrative

texts) heavily influence the accuracy of epanaphora classification.

6.1.2 Value of Epanaphora Detection and Classification

Through the work in our thesis on the detection and classification of epanaphora we

have shown that rhetorical figures can be used as significant and reliable indicators

for document analysis. We have further demonstrated that the shallow attributes of
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repetitions are sufficient to create a dependable set of rules for epanaphora detection

and classification. This in turn shows that it is not necessary to perform deep analysis

of text to extract information about author intent, but that it is more important to

look at the appropriate set of attributes and couple them with a relevant set of rules.

The templates for these rules are already available in the form of definitions for

rhetorical figures. The work in our thesis is valuable in this aspect because it proves

that it is possible to use the definitions of rhetorical figures to create computationally

significant rules. In return we justified these definitions by providing empirical results

which corroborate the general assertions implicit in the definition of epanaphora. As

a result we contribute to the study of rhetoric itself by providing the tools and results

necessary to disambiguate, formalise, and improve the definitions of rhetorical figures.

6.2 Future Work

As a new research field, the computational use of rhetorical figures in document

analysis promises a wealth of research opportunities. In our thesis we have only

barely opened the door to this field, and there are multiple directions in which this

work can be taken in the future. However, there are some tasks which are more

urgent than others.

We find that the most critical short-term research aspect of the computational

study of epanaphora is the accuracy with which intentional epanaphora can be dis-

tinguished from accidental epanaphora. The correlation between the attributes of

instances of epanaphora and their intentional or accidental nature is still largely oc-
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curring on an individual basis. We have shown that introducing constraints build

upon the combined values of two or more attributes can improve a classifier’s abil-

ity to distinguish between intentional and accidental epanaphora, but there are still

many variants to explore. We have also shown conclusively that the keyword at-

tribute is too immature to be an effective measure of intentionality. While the

exclusion of keyword attributes from the list of selection constraints for intentional

instances of epanaphora does not have a negative effect on our model’s capability to

discriminate between intentional and accidental instances of epanaphora, we suggest

that other venues of classification can be introduced which can take place instead

of simple keyword attributes. Among these venues are part of speech tagging, word

frequency, and weighted discrimination of keyword attributes.

Finally we need to introduce more attributes, specifically those related to sentence

context and text structure. We have shown that a prominent subsection of accidental

epanaphora come from non-narrative texts such as indices, lists, and data tables,

and that it is recommended that a distinction be made between narrative and non-

narrative texts in order to improve the accuracy of epanaphora classification. We

furthermore believe that the layout of a document is an additional surface attribute

of said document whose correlation with rhetorical figures should be explored in

further studies.

Beyond the possible accuracy improvements in epanaphora detection we also find

that it is worthwhile to further explore the variations in intentional and accidental

epanaphora from one text corpus to another. The opportunities in this area are end-

less. Historical variations, changes in narrative style by author, prose versus poetry,
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and even language can contribute to different interpretations of the intentional or

accidental nature of instances of epanaphora.

We hope that future research will follow the trail laid out in this thesis and further

explore the relation between detection and classification of intentional epanaphora

and document classification. Having demonstrated that epanaphora is a valuable

metric attribute itself, we wish to see how this attribute can be applied to existing

metrics for document classification and analysis.

Lastly there are all the other rhetorical figures which can be studied. Rhetorical

figures have been largely deemed to either be too inaccurate or to lack sufficient

information density to be of use in computational linguistics. In this thesis we have

demonstrated that with due diligence the introduction of rhetorical figures benefits

not only computational linguistics but also other fields in computer science such as

document classification and information retrieval. The crucial step however is to

update the historical descriptions of each rhetorical figure with modern definitions

that can be used to generate rulesets for the detection and classification of said figure.
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Appendix A

Annotation Statistics

This section contains the primary statistics that resulted from the annotation pro-

cedure in Section 5.1.1. All values on the y-axis were normalised to indicate the

representative percentage of each dataset. For example, of all the positive matches

in Figure A.1 around 60 percent had a tuple width of two, 16 percent a tuple width

of three, and so on. A different way to look at this is to take the values as being those

of a representative group of 100 epanaphora from each set. The reason for choosing

to display this data in this format – as opposed to raw numbers – is because during

the annotation process the overall ratio of epanaphora having a positive match to the

search criteria given to the annotators versus epanaphora not matching all criteria

is quite low. If raw numbers had been used, it would not have been practical to

compare these side by side.

Furthermore, for attributes requiring average and median value analysis those

values were rounded to the nearest integer. The reasons for this are two-fold: First
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of all the input set itself is restricted to integer values, and for the purpose of this

analysis it it reasonable to generate output that can be compared with the input

on the same scale, which in this case would be integers. For example it just does

not make sense to be measuring sentence length in fractions of words. Secondly we

wanted to restrict the size of the input to the classification algorithms in Section

5.1.2
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Figure A.1: Tuple width statistics for
positive matches

Figure A.2: Tuple width statistics for
negative matches

Figure A.3: Combined positive and negative tuple width statistics
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Figure A.4: Keyword statistics for posi-
tive matches

Figure A.5: Keyword statistics for nega-
tive matches

Figure A.6: Combined positive and negative keyword statistics
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Figure A.7: n-Gram statistics for mini-
mum positive matches

Figure A.8: n-Gram statistics for mini-
mum negative matches

Figure A.9: Combined positive and negative minimum n-gram statistics
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Figure A.10: n-Gram statistics for max-
imum positive matches

Figure A.11: n-Gram statistics for max-
imum negative matches

Figure A.12: Combined positive and negative maximum n-gram statistics
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Figure A.13: n-Gram statistics for me-
dian positive matches

Figure A.14: n-Gram statistics for me-
dian negative matches

Figure A.15: Combined positive and negative median n-gram statistics
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Figure A.16: n-Gram statistics for aver-
age positive matches

Figure A.17: n-Gram statistics for aver-
age negative matches

Figure A.18: Combined positive and negative average n-gram statistics
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Figure A.19: Keyword statistics for positive matches

Figure A.20: Keyword statistics for negative matches
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Figure A.21: Gap statistics for minimum
positive matches

Figure A.22: Gap statistics for minimum
negative matches

Figure A.23: Combined positive and negative minimum gap statistics
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Figure A.24: Gap statistics for maxi-
mum positive matches

Figure A.25: Gap statistics for maxi-
mum negative matches

Figure A.26: Combined positive and negative maximum gap statistics
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Figure A.27: Gap statistics for median
positive matches

Figure A.28: Gap statistics for median
negative matches

Figure A.29: Combined positive and negative median gap statistics
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Figure A.30: Gap statistics for average
positive matches

Figure A.31: Gap statistics for average
negative matches

Figure A.32: Combined positive and negative average gap statistics

226



Figure A.33: Keyword statistics for positive matches

Figure A.34: Keyword statistics for negative matches
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Figure A.35: Sentence length statistics
for minimum positive matches

Figure A.36: Sentence length statistics
for minimum negative matches

Figure A.37: Combined positive and negative minimum sentence length statistics
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Figure A.38: Sentence length statistics
for maximum positive matches

Figure A.39: Sentence length statistics
for maximum negative matches

Figure A.40: Combined positive and negative maximum sentence length statistics
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Figure A.41: Sentence length statistics
for median positive matches

Figure A.42: Sentence length statistics
for median negative matches

Figure A.43: Combined positive and negative median sentence length statistics
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Figure A.44: Sentence length statistics
for average positive matches

Figure A.45: Sentence length statistics
for average negative matches

Figure A.46: Combined positive and negative average sentence length statistics

231



Figure A.47: Keyword statistics for positive matches

Figure A.48: Keyword statistics for negative matches
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Figure A.49: Positive match statistics
for sentences per paragraph

Figure A.50: Negative match statistics
for sentences per paragraph

Figure A.51: Combined positive and negative statistics for sentences per paragraph
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Appendix B

Classifier Results

.
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Figure B.1: J48 decision tree threshold (ROC) curve

Figure B.2: J48 decision tree cost curve
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Figure B.3: J48 decision tree threshold (ROC) curve (revised training corpus)

Figure B.4: J48 decision tree cost curve (revised training corpus)
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Glossary

Aggregation In Computational Linguistics, the process by which sentences with

similar structures are combined to reduce repetition, 12

Artificial Intelligence (AI) A branch of Computer Science that focuses on creat-

ing intelligent machines, 10, 184

Atomic Changes Small, local, and self-contained changes affecting only few tokens

or entities, 21

Bayesian Network A probabilistic model that represents the relations between

random variables in a Directed Acyclic Graph (DAG), 21

Computational Linguistics An area of AI which focuses on the understanding

and generation of natural language (human readable) text, 184–186, 188

Coreference In Computational Linguistics, the process by which similar structures

in consecutive sentences are replaced with referring expressions, such as pro-

nouns, 12, 187

Directed Acyclic Graph (DAG) A directed graph with no cycles, 184
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Distributed System A computer system that distributes the computational work-

load among several machines in a network, 11

Entropy A measure of the distribution of lexical tokens within a document, 21

Epanaphora Repetition of the same word or group of words at the beginning of

successive clauses, sentences, or lines, 41

Epistrophe Ending a series of lines, phrases, clauses, or sentences with the same

word or words. Ex. “What lies behind us and what lies before us are tiny

compared to what lies within us.”, 37

Feature-Agnostic Unaffected by salient features, 18

False Positive (FP) The error of tagging something as a positive match where it

should have been negative, 128

Generation Grammar A set of grammatical rules for natural language generation,

11

Granularity The average size of tokens or entities used in a NLP task. This size

affects the sensitivity of the system, 16

Hypernymy Semantic relation in which the semantic range of one word includes

that of another (IsA), 32, 185

Hyponymy Semantic relation in which the semantic range of one word is included

in that of another (SUBSUMES). Opposite of Hypernymy, 32
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Isocolon A series of similarly structured elements having the same length. A kind

of parallelism. Ex. “Veni, vidi, vinci.”, 37

Lexical Choice In Computational Linguistics, the process by which a NLG system

chooses synonyms, 12

Lexical Semantics Application of semantic analysis, 30

Monolithic System In Computer Science, a system where one large program han-

dles most tasks, 13

Morphology In Computational Linguistics, the rules which govern word structure,

12

Multi-Agent System A computer system that distributes tasks among several

specialized programs (agents), 11

n-Gram A sequential, ordered, and gapless set of tokens, 47, 163, 186

n-Gram Ovelap The number of consecutive tokens that are identical between two

n-Grams, 47

Natural Language Generation (NLG) A sub-field of NLP which focuses on gen-

eration on human-readable text, 10, 185, 187

Natural Language Processing (NLP) See Computational Linguistics, 10, 45,

185, 186
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Natural Language Understanding (NLU) A sub-field of NLP which focuses on

understanding of human-readable text, 10

Optical Character Recognition (OCR) Electronic translation of scanned im-

ages of handwritten, typewritten or printed text into machine-encoded text,

163, 164, 174

Pronominalization Replacement of nouns with pronouns. See Coreference, 23

Rhetorical Anaphora Repetition of the same word or group of words at the be-

ginning of successive clauses, sentences, or lines. Ex. “This car, this house,

and this front lawn.”, 37

Receiver Operating Characteristic (ROC) A graphical plot of the sensitivity

(true positive false positive rate) for a binary classifier system as its discrimi-

nation threshold is varied, 128, 131, 134, 136–138, 141, 142, 156, 158, 159, 162,

167, 170

Schemes In rhetoric, figures of syntax, 27

Semiotic Analysis Application of Semiotics, 27

Semiotics The study of signs and communication, 187

Sentence Planner A framework that performs the Sentence Planning tasks of

NLG, 11
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Sentence Planning Also known as Microplanning, a sub-task of classical NLG

which generally encompasses tasks that are involved with neither document

planning nor surface realization, 187

Support Vector Machines (SVMs) A supervised learning method used for clas-

sification and regression, 21, 45

Synset Entities which comprise the basic units in the WordNet lexical ontology, 31

Syntax In Computational Linguistics, the rules which govern sentence structure, 12

Topic The subject matter of a conversation or discussion, 188

Topicality Arrangement by Topic, 23

True Positive (TP) The error of tagging something as a negative match where it

should have been positive, 128

Text REtrieval Conference (TREC) A conference created to enable evaluation

of information retrieval methods on large-scale datasets, 43, 45, 73, 163, 166,

167

Tuple An ordered set of non-repeating tokens that allows gaps between said tokens,

57

Extensible Markup Language (XML) A set of rules for encoding file in machine-

readable form, 164
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